WebRTC: Real Time Communications for the Web

Dr. Cullen Jennings
May 2015
fluffy@cisco.com
WebRTC Motivations

• Easy for developers to put communications where needed
 Enable contextual communications

• Easy to deploy across many operating systems and types of devices

• Strong security
 Communications users can trust

• Faster to get new features from developer to user

• Peer 2 Peer
Plan

• Take the guts of a SIP soft phone
• Stuff it into a browser
• Wrap it with an programming interface in the browser that any website can use
• TBD
• Profit
How to Think About WebRTC

• Technology
 It’s a technology that enable voice, video, and data sharing in a peer to peer fashion between applications running in a browser

• Peer 2 Peer
 Traditionally browsers only sent data in client server fashion, now they can talk browser to browser

• Big Eco System
 It is interoperable with modern unified communication systems
 Accessible to many developers

• Zero Install
 It’s part of the web browser and does not require installing any extra plugins
Firefox / Telefonica Hello
Google Hangouts
Seamless Video & Audio Communications in Your App

AT&T Enhanced WebRTC API (Beta)
How WebRTC Works
Architecture

Identity Provider

JavaScript Application

Web Server

Voice, Video, & Data

Network, NAT/FW

HTTP

SIP

Alice

Bob
The Parts of WebRTC

- WebRTC API
- Identity
- SDP
- ICE/STUN/TURN
- DTLS/SRTP
- CODECs
Media - Codecs

- Either end can have many codecs and a negotiation picks the best possible that both ends support

- Audio Codecs
 - Narrowband audio: G.711
 - Wideband audio: Opus

- Video standards:
 - Browser required to support both VP8 and H.264
Data Channel

• WebRTC isn’t just voice and video
 It also provides direct P2P data channels
 Useful for games, file sharing, P2P networks, etc.

• How does this relate to Web Sockets?
 Similar API but data goes direct
 This makes it easy to polyfill WebRTC DC apps to WebSockets

• Lots of apps will just use Data Channels
Media Transport - SRTP

- SRTP provides a sequence number and timestamp for each media packets
- This allows synchronization of play out of different media streams (lip sync)
- It also allows detection of lost packets

- SRTCP provides feedback on packet loss rates and SRTP statistics
- SRTP supports many forms of error recovery and forward error correction

- SRTP uses symmetric key cryptography to provide confidentiality and integrity
- Ongoing IETF work to multiplex multiple SRTP over the same UDP flow
Media Keying - DTLS

• DTLS is simply the same TLS used for HTTPS adapted for UDP
• DTLS handshake is used to form the session keying material for the SRTP media encryption
• Used with self signed certificates. Each certificate has a fingerprint which is bound to a user identity in a way described later in this presentation
NAT / Firewall Traversals - ICE

• ICE provides a way to get media between two devices that are both behind NATs and some firewalls

• It also forms a way to detect changing network conditions and switch from an interface such as WiFi to a different interface such as LTE

• Finally it is used for media consent to make sure unwanted traffic is not sent to devices

• Combination of several components
 TURN: is a remote relay tunnel protocol to tunnel data to and from a public server
 STUN: is a way to ask a public server what a client’s apparent IP address is
 ICE: an approach to take several addresses that might work to communicate to another peer and test them to see which one works
1) Gather Address
 P:100 private
 N:200 from Echo
 R:300 from Relay

2) Try all of
 P:100, N:200, R:300

3) Check connectivity

4) Choose
 Use N:200
Media Consent
Do you want to talk

Yes

Web Server

HTML5

Web Browser

SRTP
Signaling - SDP

- The SDP offer/answer protocol used by SIP is used for media negotiation
- Rich interface to describe what codecs, network transports, and media options one side can support (the offer) and which ones the other sides wants to select (the answer)

```
v=0
o=- 292742730 29277831 IN IP4 131.163.72.4
s=
c=IN IP4 131.164.74.2
t=0 0
m=video 52886 RTP/AVP 31
a=rtpmap:31 H261/90000
a=content:slides
m=video 53334 RTP/AVP 31
a=rtpmap:31 H261/90000
a=content:main
```
Identity
Who is fluffy@cisco.com

- Who is in the best position to make strong assertions about who fluffy@cisco.com is?
 Cisco.com allocated the address fluffy to Cullen
 They provided a way for Cullen to prove his identity with logon password, secure token card, etc.
 Having a certificate authority (CA) assert that some random person can receive email sent to fluffy@cisco.com is a weak assertion of identity

- Who knows who cisco.com is?
 The CA can verify with DNS registrars who has been given that name and can get appropriate contacts for it
Identity

1. User “logs on” using protocol downloaded from identity provider in JavaScript/HTML
2. Browser gets an assertion from identity provider which binds the DTLS fingerprint to the identity such as fluffy@cisco.com
3. The calling JavaScript passes the assertion to the far side
4. Bob’s browser verifies the assertion with identity provider and checks that the DTLS fingerprint matches the assertion
5. Browser displays "secure to fluffy@cisco.com"
Quality of Service (QoS)

• Based on Differentiated Service Code Point markings set on media packets

 JS Application can provide hints about relative priority of media streams
 Browser knows media type of packets
 Browser sets the DSCP appropriately
 Network may take DSCP into account when prioritizing packets
Congestion Control & Rate Adaptation

• Goals:
 Be “fair” with TCP - i.e., don’t push TCP traffic to floor and don’t be pushed to floor by TCP
 Minimize latency
 React to changing network conditions quickly
 Provide a consistent flow of data

• Variety of algorithms combined:
 Losing too many packets, slow down
 Not losing many packets, speed up
 Packet delay starts going up, slow down
 If up shifted, then promptly downshifted, wait awhile for next upshift
Industry Transitions

- Viruses / malware / industrial spying
 reduce willingness to run plugins or new software

- Dev Op
 driving a need for rapid deployment

- Embedded communications
 put communications in the tools and systems that need it

- Internet of Things
 enable more “thing” to “people” communications
Cloud Data

• Huge amount of data in the cloud which WebRTC further adds too
• Large amounts of collection by governments and less legal entities
• Continuous stream of financial losses
If you can’t protect data, don’t collect it
Securing the Cloud

Conference Bridges with the Keys
The **Old way** to do Multi-User Security Using SRTP

+ Endpoint encrypts/authenticates using SRTP with its own key and unique SSRC per stream
+ Multi-point server verifies authentication and decrypts each stream
+ Multi-point server generates a unique key for each endpoint and a unique SSRC per stream per endpoint
+ Multi-point server generates a new RTP header and encrypts and authenticates prior to forwarding
+ SRTP context is managed between endpoint transmitters and server as well as between server and endpoint receivers
Multi-User Security with Content Privacy (the New Way)

- Endpoint transmitter encrypts and authenticates content
- Multi-point server verifies authentication, modifies RTP header and re-authenticates
- Key used for media encryption is not known to server
- Endpoint receiver authenticates packet and decrypt media

© 2013-2014 Cisco and/or its affiliates. All rights reserved.
WebRTC, Privacy, TOR, and VPNs

- The WebRTC API allows a webpage to get your IP addresses
 This includes, public, private, and multi-homed
 Needed to provide these to the other side to send peer to peer traffic
 Web servers have always got your public address

- If you run a split tunnel VPN, it reveals both external interfaces
 If you are in Canada, and have a VPN into the US so you look american to netflix, a netflix web client might be able to figure out that one of your public IPs is in Canada and one is in the US

- If you are using a VPN to hide your location, don’t use a split tunnel
 Many enterprises have a policy against using split VPN
Standards & Implementations
Standards: WebRTC and RTCWeb

WebRTC 1.0: Real-time Communication Between Browsers

Overview: Real Time Protocols for Browser-based Applications
draft-ietf-rtcweb-overview-06

Abstract

This document is the result of a joint effort by the IETF and the W3C to provide a comprehensive overview of the Real-Time Communication (RTC) protocols and technologies used in modern web applications. The goal is to provide a clear understanding of the various mechanisms and technologies that enable real-time communication between web browsers.

Security Considerations for RTC-Web
draft-ietf-rtcweb-security-04

Security is a critical aspect of real-time communication. This document outlines the security considerations and best practices for implementing RTC-Web applications to ensure data privacy, integrity, and confidentiality.

Javascript Session Establishment Protocol
draft-ietf-rtcweb-jeep-02

This document describes the Javascript Session Establishment Protocol (JSSEP), which is a mechanism for allowing JavaScript applications to establish real-time communication sessions.
IETF RTCWeb WG

- Main IETF work is done in the RTCWeb working group
- Key documents are:
 - draft-ietf-rtcweb-audio
 - draft-ietf-rtcweb-audio-codecs-for-interop
 - draft-ietf-rtcweb-constraints-registry
 - draft-ietf-rtcweb-data-channel
 - draft-ietf-rtcweb-data-protocol
 - draft-ietf-rtcweb-fec
 - draft-ietf-rtcweb-jsep
 - draft-ietf-rtcweb-overview
 - draft-ietf-rtcweb-rtp-usage
 - draft-ietf-rtcweb-stun-consent-freshness-11.txt
 - draft-ietf-rtcweb-transports
 - draft-ietf-rtcweb-use-cases-and-requirements
 - draft-ietf-rtcweb-video

W3C WebRTC WG

- W3C work is done in WebRTC working group
- Key documents are:
 - http://w3c.github.io/webrtc-pc/
 - http://w3c.github.io/mediacapture-main/
Implementations

- **Mozilla - Firefox**
 Working implementation with audio / video data channels
 Ongoing work on evolving standards

- **Google - Chrome**
 Working implementation with audio / video data channels
 Ongoing work on evolving standards

- **Apple - Safari**
 Maintaining strict secrecy

- **Microsoft - IE**
 Very active in contributing to standards
 Released a plugin that can provide limited functionality via polyfill
 Conflicting statements about will do WebRTC 1.1 / will not do SDP
• WebRTC always recognized they could do both a high level and low level API
 Decided to start with high level API and later do low level API
 Microsoft had desired a low level API first but that proposal was rejected by the WG

• Microsoft formed a community group to push it’s low level API called ORTC
 this is not a standards forming group

• Once WebRTC 1.0 is done, the WebRTC WG would like to start working on a low level API
 The low level API would still keep the high level API as well and become WebRTC 1.1
 ORTC would be relevant input to this
 Microsoft has objected to the WG charter update to do this
Ongoing Major Items

- Screen Capture API
- Depth Camera (3D range images)
- Control of coding for video on particular Peer Connection (Adding new JS object)
- Congestion Control
- Recording
- Simulcast Video
- Trickle ICE
- Port reduction with Bundle
- Partial Offer / Answer
Summary
The Power to Create

Ease of Development
- No VoIP expertise needed
- Enables huge web developer population
- New applications
- Mashable components
- Cross platform

Ease of Deployment
- Distribution = URL
- Datacenter, not individual devices
- Low maintenance
- Rapid updates

Many Devices
- Click to access
- Any device
- Reduced need for plugins/native apps
- Extends business comm. systems

Massive Adoption
Digging Deeper

• Read the specifications at:
 • http://w3c.github.io/webrtc-pc/
 • http://w3c.github.io/mediacapture-main/
 • http://tools.ietf.org/wg/rtcweb/

• Read the books:
 http://shop.oreilly.com/product/0636920030911.do
 http://webrtcbook.com/
 (and many more)

• Join the community mailing lists of ISOC supported standards organizations
 W3C: Send email with "subscribe" to public-webrtc-request@w3.org
 IETF: https://www.ietf.org/mailman/listinfo/rtcweb
Credits and Usage

• If you want to use these slides, please contact me at fluffy@cisco.com and I will be happy to get you some slides you can use

• Thanks to many people for contributions to these slides including Eric Rescorla, Ethan Hugg, Suhas Nandakumar, Darin Dunlap and Martin Thomson
Thank you.