Dissemination of Flow Specification rules

Jean-Marc Uzé
TF-NGN, Zürich, 15/04/05
Capabilities of routers

- Forwarding ASIC: maps destination prefix to next-hop.
- Traffic filtering ASIC: packet header pattern to action (drop, rate-limit, etc).
Filtering engine

- Manually configured with static entries.
- Is that a problem?
- Why is the forwarding ASIC not programmed in the same way with static routes?
 - i.e. to advertise new customer prefix we could pick up the phone and call peer networks.
 - Really safe.
Dynamic firewall filtering

- Routing is dynamic and inter-domain
- Filtering is static and intra-system

- Need to coordinate Flow filtering for intra and inter-domain
- More generally there is a need to Extend routing information with Flow Specification
Distributed DoS Attacks

- Attacker compromises hosts in multiple networks, using them to launch a coordinated attack
- Attack can’t simply be stopped at one point
- Achieves bandwidth leverage from multiple sources

Users @ 256k: 100 = 25Meg, 500 = 128Meg
DDoS Attack Architecture

Users @ 256k:
100 = 25Meg
500 = 128Meg
2,000 = .5Gig

Sites @ 100 Meg:
10 = 1 Gig
50 = 5 Gig
100 = 10 Gig
Need to coordinate traffic filtering

- Filter close to the source(s).
 - Traffic rates may be too large for AS 1 to handle without impact.
 - E.g. AS 2 to AS 1 interconnect can get congested.
Main current approaches

- Advertise /32s specific route
 1. with black-hole community in BGP
 • marks such route advertisements with a community that gets translated into a discard next-hop by the receiving router
 2. that attracts traffic to a particular node that serves as a deterministic drop point
 3. with a BGP community linked to a feature counting packet/bytes destined to it (e.g. Destination Class Usage/DCU), on customer-facing ingress interfaces counters retrievable via SNMP => DOS identification
Real-time DoS Identification with Destination Class Usage

```
policy-options {
  community victim members 100:100;
  policy-statement set-dest-class
  term 1 {
    from {
      protocol bgp;
      community victim;
    }
    then {
      destination-class dcu-victim;
      accept;
    }
  }
}

interfaces {
  so-2/0/1 {
    unit 0 {
      family inet {
        address 192.168.4.1/32;
        accounting {
          destination-class-usage;
        }
      }
    }
  }
}

routing-options{
  forwarding-table{
    export set-dest-class;
  }
}
```
Real-time DoS Identification with Destination Class Usage
Real-time DoS Identification with Destination Class Usage

BGP update
128.8.128.80/32
Community 100:100

128.8.128.0/24

Copyright © 2004 Juniper Networks, Inc.
Common Problems with Current approaches

- We just advertise /32s in BGP unicast routing…
- Problems:
 - Need to open up policy filters to allow more specifics.
 - Mixed up with unicast routing.
 - Traffic filtering engines can deal with more granularity.
Solution: Dissemination of flow specification rules with BGP (1)

- Allow BGP to propagate an n-tuple
 - matching could be a combination of source/dest prefix, source/dest port, ICMP type/code, packet size, DSCP, TCP flag, fragment encoding, etc..., E.g.:
 - all packets to 10.0.1/24 and TCP port 25
 - all packets to 10.0.1/24 from 192/8 and port \{range [137, 139] or 8080 (NLRI length of 16 bytes)\}
Solution: Dissemination of flow specification rules with BGP (2)

- Information is kept independently of unicast routing.
- But it is automatically validated against unicast routing.
- Filtering actions could be a combination of accept, discard, rate-limit, sample, redirect, etc...
 - Accomplished by mapping a user defined community value to platform network specific behavior via user configuration.
Trust model

- Unicast routing advertisements control where traffic gets forwarded.
- Consider a filter as a “hole” in the aggregate of traffic that is being forwarded to a destination prefix.
- Accept filter when advertised by next-hop for the destination prefix.
Validation

- Compare destination address of traffic filtering rule with best match unicast route for this prefix.
 1. Originator of filter and unicast route must be same.
 2. No more specifics from a different AS.
Flow spec Dissemination

- gw2 accepts traffic filtering rule from a.
- gw3 prefers unicast via b; rejects filter.
- gw1 may (or not) accept the filter based on the “originator” of the BGP route.
Flow spec Dissemination

- With a Route Reflector:
 - The RR may (or not) accept the filter based on the “originator” of the BGP route.
 - gw3 prefers unicast via b; rejects filter.
 - gw1 will follow the RR decision (accept or not the filter)
Why BGP ? (1)

- BGP offers the substantial advantage of being an incremental addition to deployed mechanisms.
- The key issues in terms of complexity are problems which are common to unicast route distribution and have already been solved in the current environment
 - From an algorithmic perspective, the main problem that presents itself is the distributed loop-free distribution of <key, attribute> pairs. The key, in this particular instance, being a flow specification.
Why BGP? (2)

- Allows a network operator to reuse:
 - internal route distribution infrastructure (e.g.: route reflector or confederation design)
 - existing external relationships (e.g.: inter-domain BGP sessions to a customer network)

- Proven Scalability and Flexibility of BGP in adding new services
 - Multicast, IPv6, L3 VPN, L2 VPN, VPLS
Summary

- Extension to routing information.
- Different traffic filters accepted in different parts of the network according to different unicast routing decisions.
- Inter-domain solution to coordinate traffic filtering
 - Open to several potential applications
- IETF draft: draft-marques-idr-flow-spec-02
- Mailing list:
 - http://www.cqr.org/mailman/listinfo/flow-spec
Thank You

juze@juniper.net