Issues in centralized identity management

TF-CSIRT Technical seminar
Background

• University of Oslo
 – About 7 500 employees (staff and faculty)
 – About 33 000 students
 – About 1 800 PhD
 – About 6 000 “others”
 – Several research centers, hospitals etc
 – Wide research cooperation (both in Norway and abroad)
 – Yearly turnover of about 7 000 people
Background

• Wide range of user services
 – Authentication services across the IT infrastructure at the UiO
 – E-mail
 – Home directories hosted by UiO
 – Print services
 – Controlled access to diverse administrative systems
 – Wireless internet connection, EduRoam
 – Access to the Norwegian federation (FEIDE) and cross-federated access (Kalmar, EduGain)
Background

• Automatization and routines for user administration and identity management established early due to
 – The number of users of the IT services
 – The various and steadily growing demands for access control and integration of services into the existing infrastructure etc

• First “almost completely” centralized user administration system established in 1993-94 (the work actually started already in '88 :-))
 – Covered employees only
Background

• General and complete centralized Idm solution from 1997 (UREG2000 – Y2K compliant :-))

• First Norwegian federation ideas emerging and resulting in design and implementation of Cerebrum in 2001 – 2003
 – Mainly to accomplish a generally deployable, reusable Idm solution compliant with the federation requirements
Cerebrum

- Python and RDBMS based framework
- Covers the object types needed for Idm and user administration (people, accounts, groups, organization units etc)
Cerebrum

• Supports automatic import and join of person data from multiple authoritative source systems into a central directory (Cerebrum db)
 – Join is a regulated act of resolving information inconsistencies in authoritative systems

• Supports automatic account administration (creation, modification, removal) across available IT services
Cerebrum core

• Core
 – Core aims to cover the general data model for Idm
 – No dependence to the IT infrastructure of an organization introduced (and therefore easily deployed just about anywhere)
 – No business rules for an organization introduced in the core API but:
 • Extensive configuration possibilities
 • Support for implementation of business rules via python mixin classes and overrides
Cerebrum modules

- Modules
 - Some organization specific (export of user names and e-mail addresses to the UiOs HR-system)
 - Some target system specific (E-mail module, DNS module)
 - Supporting mixin classes with possibilities for overrides of standard API functions
A Cerebrum module - LDAP

- UiO LDAP - implementation and use
 - No authentication information is released from LDAP, only encrypted ldap_bind() is supported
 - LDAP-implementation at UiO consists of several trees:
 - organization (core, inetOrgPerson, eduPerson, eduOrg, norEduPerson, norEduOrg schema etc)
 - organization structure, people, groups
 - UiOs whitepages and federation backend
A Cerebrum module - LDAP

- system
 - Traditional NIS information (uid, gid etc)
 - user, group and netgroup trees
- mail
 - Backend for UiOs e-mail system
 - Contains information about quota limits, spam settings and other relevant e-mail data
 - Authentication information for e-mail targets
A Cerebrum module - LDAP

- All LDAP updates are done by Cerebrum
 - Batch updates
 - LDIF files distributed to the LDAP-servers at UiO
A Cerebrum module - LDAP

- Implemented as
 - Python Factory class
 - Generic methods compliant to federation schema
 - Institution specific export rules implemented through Cerebrums general configuration

- Overrides and institution specific methods implemented as python mixin classes
 - UiO has special rewrite rules for phone numbers, addresses etc.
Identity management

• Is about a lot of things, among others also:
 – Enhancing control over data flow at an organization
 – Enforcing policies (be they written or merely spoken :-)) through automatization and other appropriate tools
 – Providing timely and correct access level to services
 – Reducing the risk of breach in data integrity
 – Reducing registration related overhead

• But an Idm cannot substitute policy, documentation and decision making processes
Security issues in centralized identity management

• Very obvious
 – Password control
 – Access control

• Not-so-obvious
 – Privacy issues
 – Data integrity
Security issues in identity management

- Somewhat obscure
 - Data element interpretation and encapsulation of elements (how does a set of loosely connected elements acquire a meaning?)
 - Non-personal data dissipation control
Password control

• Single set of authentication data for each user and all services available
• Consistent password algorithm for all IT service provided by an organization (it is actually a single password)
• Consistent password updates for the whole organization
Password control

• Easily accessible (for legitimate users) single point of update
• Plain text password have to be kept for provisioning of services that do not understand common encryption methods and cannot use other authentication mechanisms
 – A centralized system enables you to automatically remove these when no longer needed
Access control

• Access granting based on policies and regulations (but for the diverse shortcuts :-))
• Access revoking based on policies and regulations
• Easily accessible single point of update
Access control

• Supposedly user friendly update methods (still quite hard to achieve)
• Role-based and other “smart” authorization systems within reach
Privacy issues (ref. EU-95/46/EF)

• Controlled dissipation of person information
 – Easily accessible information about which systems and services require personal information (of less sensitive as well as sensitive nature)
 – Information about dissipation of data about any single person easily obtainable
Privacy issues (ref. EU-95/46/EF)

- Routines for secure data transfer
- Implemented rules for access restriction to sensitive information (also for privileged users)
- Accountability (we know who dunnit)
- Change tracking (...and we know when and how)
- Auditing (is everything correct and proper?)
Data integrity

- Data fetched from authoritative source systems on a regular basis
- All relevant data elements updated on a regular basis
- All inconsistencies reported to relevant offices (i.e. study advisors or personnel offices)
- Identifier changes handled and dissipated throughout IT systems (if required)
Data element interpretation

• There is a jungle out there:
 – Who are you?
 – Where are you?
 – Why are you here?
 – What are you doing?
 – Will you be doing something completely different tomorrow?
 – Really, who are you?

• Every single element addressing these questions needs to be interpreted
Data element encapsulation

• Interpretation of single elements will take you far but often you need more
 – Who are you, where are you and why are you (here) might decide access level to a service or a set of services
 – The core data always stays the same, even if the combination of elements changes (maybe a service does not need to know why you are here)
 – The interpretation of the encapsulation needs to be consistent
 – The data provider must be “the boss” here – even if a service happens to disagree or require different interpretation of an encapsulation
Data element encapsulation

• Does this remind you of something?
 – Establish a common data model and follow through (basic rule for fully integrated environment)
Non-personal data quality assurance and dissipation

- This is really a side issue here, but still...
- A lot of information about internal workings of an organization is made available for identity management purposes. At a university for instance you will find:
 - Information about courses, lessons, activities etc
 - Information about employee categories, employment rules, seniority etc
 - Information about rooms (offices), telephone numbers...
Non-personal data quality assurance and dissipation

• However all used data elements will generate more work
 – Errors are discovered and must be corrected
 – Unused data elements must be populated for new (and existing) services

• The identity management system often catalogs and controls dissipation of non-personal data but:
 – Should this be the case?
 – Should we establish other procedures for both quality assurance and dissipation?