irt: Object Workshop

Wednesday, Sept. 20, 2006 – Espoo, FI
Outline

1) The Background

2) "I/O" - Interactions with the Database

3) Technology

4) The TI-Approach - from an IRT-Team's point of view

5) Further Reading and Documentation
 (to be added in an updated version of the slides)
The Background (1)

• The Database: why and how?
 – initially, keeping track of Internet resources (IP #s, AS #s) was a pencil and paper task, sometime (really! the HP “accident”)
 – done centrally at IANA (Jon Postel), then by SRI, InterNIC,...
 – maintained like the „Hosts File“

• Regional Activities started in the late 1900s
 – in Europe, Asia-Pacific (late 80s/early 90), then The Americas
 – later LACNIC (late 90s) and eventually AfriNIC

• Regional Registry Database Models
 – one per region (RIPE NCC)
 – optionally with intermediate national (Asia-Pacific Region)
 – optionally with „rwhois“ approach (ARIN Region)
The Background (2)

What do the Registries have to keep track of?

• **Authoritative data for unique identifiers**
 – IP Address Registry (IPv4 and IPv6)
 – Autonomous System numbers

• **Ancillary Data**
 – domain names (historic - last trace: „referral mechanism“)

• **Voluntary collaboration support**
 – routing registry aka “IRR”

• **Internet Operations Support**
 – reverseDNS delegations (IPv4 and IPv6, part of “arpa.” tree)
 – ENUM registry (RIPE NCC: e164.arpa. tree)
The Background (3)

The architecture and the structure of the Database:

• „Objects“, stored and handled as monolithic entities
 – attribute/value pairs as-block: AS1853 – AS1854
 – templates, mandatory and optional attributes
 – syntax
 – semantics
 – „something“ that makes an object unique
 • a „handle“, e.g. nic-hdl: WW144
 • a type + name, e.g. irt: IRT-UK
The Background (Example 1: A Template)

```
$ whois -t irt
irt: [mandatory] [single] [primary/look-up key]
address: [mandatory] [multiple] [ ]
phone: [optional] [multiple] [ ]
fax-no: [optional] [multiple] [ ]
e-mail: [mandatory] [multiple] [lookup key]
abuse-mailbox: [optional] [multiple] [inverse key]
signature: [optional] [multiple] [ ]
encryption: [optional] [multiple] [ ]
org: [optional] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
techn-c: [mandatory] [multiple] [inverse key]
auth: [mandatory] [multiple] [inverse key]
remarks: [optional] [multiple] [ ]
irt-nfy: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple] [ ]
source: [mandatory] [single] [ ]
```
The Background (Example 2: Syntax, Semantics)

```bash
$ whois -v irt
```

The irt class:

An irt object is used to define a Computer Security Incident Response Team (CSIRT).

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>irt:</td>
<td>[mandatory]</td>
<td>[single] [primary/look-up key]</td>
</tr>
<tr>
<td>mnt-by:</td>
<td>[mandatory]</td>
<td>[multiple] [inverse key]</td>
</tr>
<tr>
<td>changed:</td>
<td>[mandatory]</td>
<td>[multiple] []</td>
</tr>
<tr>
<td>source:</td>
<td>[mandatory]</td>
<td>[single] []</td>
</tr>
<tr>
<td>irt</td>
<td></td>
<td>Specifies the name of the irt object. The name should start with the prefix "IRT-", reserved for this type of object.</td>
</tr>
</tbody>
</table>

An irt name is made up of letters, digits, the character underscore "_", and the character hyphen "-"; it must start with "irt-", and the last character of a name must be a letter or a digit.
The Background (4)

The architecture and the structure of the DB:

• structured and flat resource spaces
 – IP-Address blocks are part of a distribution hierarchy or tree
 • IANA → RIR [→ NIR] → LIR → „Site“
 – AS Numbers are picked from a „flat“ pool of 16bit numbers
 – asn32 proposals being discussed
 • managed as individual entities (but there may be „ranges“)

• there are relationships between objects (links / references)
 – the most simple case: a contact person for a resource
The Background (Example 3: References)

$ whois -r irt-uk

irt: IRT-UK
address: Lacknergasse 71/23
address: A-1180 Wien
address: AT phone: +43 1 5248266
phone: +43 664 8174818
e-mail: Ulrich.Kiermayr@UniVie.ac.at
signature: X509-342
encryption: X509-343
signature: PGPKEY-708C030A
encryption: PGPKEY-708C030A
admin-c: UK3
tech-c: UK3
irt-nfy: Ulrich.Kiermayr@UniVie.ac.at
auth: PGPKEY-A8D764D8 # UK6107-RIPE (deprecated)
auth: PGPKEY-708C030A # UK6107-RIPE
mnt-by: UK-MNT
source: RIPE # Filtered
The Background (Example 4: „Recursion“)

```bash
$ whois -B irt-uk
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>irt:</td>
<td>IRT-UK</td>
</tr>
<tr>
<td>address:</td>
<td>Lacknergasse 71/23</td>
</tr>
<tr>
<td>auth:</td>
<td>PGPKEY-708C030A # UK6107-RIPE</td>
</tr>
<tr>
<td>notify:</td>
<td>Ulrich.Kiermayr@UniVie.ac.at</td>
</tr>
<tr>
<td>mnt-by:</td>
<td>UK-MNT</td>
</tr>
<tr>
<td>changed:</td>
<td>Ulrich.Kiermayr@UniVie.ac.at</td>
</tr>
<tr>
<td></td>
<td>20020820</td>
</tr>
<tr>
<td>changed:</td>
<td>Ulrich.Kiermayr@UniVie.ac.at</td>
</tr>
<tr>
<td></td>
<td>20050425</td>
</tr>
<tr>
<td>changed:</td>
<td>Ulrich.Kiermayr@UniVie.ac.at</td>
</tr>
<tr>
<td></td>
<td>20051121</td>
</tr>
<tr>
<td>source:</td>
<td>RIPE</td>
</tr>
<tr>
<td>person:</td>
<td>Ulrich Kiermayr</td>
</tr>
<tr>
<td>address:</td>
<td>Lacknergasse 71/23</td>
</tr>
<tr>
<td>remarks:</td>
<td>GPG-Key: PGPKEY-A8D764D8</td>
</tr>
<tr>
<td>mnt-by:</td>
<td>UK-MNT</td>
</tr>
<tr>
<td>notify:</td>
<td>Ulrich.Kiermayr@UniVie.ac.at</td>
</tr>
<tr>
<td>changed:</td>
<td>Ulrich.Kiermayr@UniVie.ac.at</td>
</tr>
<tr>
<td></td>
<td>20020723</td>
</tr>
<tr>
<td>source:</td>
<td>RIPE</td>
</tr>
</tbody>
</table>
Interaction with the Database (1)

• How to load and modify information?
 – initially, e-mail only
 • auto-dbml@ripe.net (you talk to a robot)
 • ripe-dbml@ripe.net (you talk to a human)
 – „Web-Update“ e.g. RIPE Web-Site, LIR-Portal
 – „Synch-Update“ as a special case to support interactive scripts

• How to obtain information from the Database?
 – $ whois -h whois.ripe.net Or $telnet whois.ripe.net 43
 – Web-Queries
 – „NRTM“: Near RealTime Mirror
 – ftp access to (most) bulk data, aka „split files“
Interaction with the Database (2)

• **How to control type and amount of information returned?**
 – include “command line” flags with the query
 • –r disables recursion, **on** by default
 • –B disables filtering of e-mail addresses, **on** by default
 • –T selects a particular type of objects, e.g. role:, person:
 • –a asks to search „all“ sources, **off** by default (see –h flag)
 • –i perform an „inverse“ search
 – (e.g. $ whois –Ti admin-c,tech-c WW144
 • –c look for CERT, i.e. irt: objects, but – see next slides!

• **How to select a particular Registry Database?**
 – $ whois –h whois.apnic.net
Interaction with the Database (3)

• **Lookup “Magic”**
 – the lookup mechanism knows about and can track
 • references (contact info, “related” info, and rir: objects)
 • ranges and hierarchy in resource space → „tree-walk“
 – $ whois -B -Tinetnum 131.130.1.200
 • does not exist, the range 131.130.0.0 – 131.130.255.255 does
 • this is legacy space, so we have to deal with ranges
• **Tree-Walk in „modern“ LIR address space?**
 – $ whois -B -Tinetnum 193.171.1.5
 • does not exist, but the range 193.171.1.0 – 193.171.1.255
 • is part of a distribution tree IANA → RIR → LIR → Site → Host
Interaction with the Database (4)

• Less Specific vs. More Specific
 – an individual host address is the most specific piece of data
 – the whole IP address space is the least specific piece of data
• starting at the bottom or root of the tree you can query for
 – m or M i.e. more specific information
• starting at a host address you can ask for
 – l or L i.e. less specific information

• Tree-Walk in „modern“ LIR address space?
 – $\text{whois } -rLTinetnum \text{ 193.171.1.5}$

inetnum: 193.171.1.0 - 193.171.1.255
inetnum: 193.170.0.0 - 193.171.255.255
inetnum: 193.0.0.0 - 195.255.255.255
inetnum: 0.0.0.0 - 255.255.255.255
Interaction with the Database (5)

• Tree-Walk in „modern“ LIR address space?

 − $ whois -rMTinetnum 193.170.0.0/15

 inetnum: 193.170.79.0 - 193.170.79.255
 inetnum: 193.170.237.0 - 193.170.237.63
 inetnum: 193.171.92.0 - 193.171.94.255
 inetnum: 193.170.8.0 - 193.170.11.255

 < >
Interaction with the Database (6)

• Looking for CERT Contact(s)?

 – $ whois -rc 193.170.0.0/15

 inetnum: 193.170.0.0 - 193.171.255.255
 org: ORG-AA1-RIPE
 netname: AT-ACONET-193-170-193-171
 < >
 mnt-by: RIPE-NCC-HM-MNT
 mnt-lower: ACONET-LIR-MNT
 mnt-irt: IRT-ACOnet-CERT
 source: RIPE # Filtered

 irt: IRT-ACOnet-CERT
 address: Vienna University Computer Center
 < >
 mnt-by: TRUSTED-INTRODUCER-MNT
 source: RIPE # Filtered
Technology: Protection & Authentication (1)

• In the Previous Century the Internet was a cosy place...
 – Protection? Which protection? Why? We are collaborating!
 – Protection Mechanism: NONE (deceased 😊)

• The primary update mechanism (still) is eMail
 – everyone knows me, it is my job, so a mail from „me“ is OK!!
 – Protection Mechanism: MAIL-FROM (deceased 😊)

• eMail is easy to forge (telnet 25, SMTP´s mail from: anyone?)
 – we need passwords, yeah, like Unix does it, ´course
 – Protection Mechanism: CRYPT-PW (being killed ☹)
 – Protection Mechanism: MD5-PW (just a tad better...)

• How about doing it „right“, eventually?
Technology: Protection & Authentication (2)

- **digital signatures, please!**
 - 1st implementation: GPG/GnuPG asymmetric cryptography
 - Protection Mechanism: PGPKEY-DEADBEEF
 - public key is stored as a regular database object

```plaintext
key-cert:      PGPKEY-DBC579D4
method:        PGP
owner:         ACONet Local-IR Domain-Admin@UniVie.ac.at
fingerprint:   87BF 7119 1BC8 A146 36FA 4F7A 9643 017A DBC5 79D4
certif:        -----BEGIN PGP PUBLIC KEY BLOCK-----
< ...... >
certif:        iQA/AwUYNr7yNJZDAXrbxXnUEQJ2qqCdGFn7tqgt1L+hdSO8...
certif:        yR6OSyYvXouBbvB1/ghC42Rw
certif:        =3Xx/
certif:        -----END PGP PUBLIC KEY BLOCK-----
mnt-by:        ACONET-LIR-MNT
source:        RIPE # Filtered
```
Technology: Protection & Authentication (3)

• digital signatures, please!
 – more recently support for X.509 certificates was added
 – Protection Mechanism: X509-

 • public key is stored as a regular database object

key-cert:	X509-342
method:	X509
owner:	/C=AT/ST=UK/L=UK/O=UniVie/OU=VUCC/CN=uk@uk.atat.at/e...
certif:	-----BEGIN CERTIFICATE-----
	< >
	-----END CERTIFICATE-----
remarks:	sample Signing Certificate
admin-c:	UK3
tech-c:	UK3
mnt-by:	UK-MNT
source:	RIPE # Filtered
Technology: Protection & Authentication (4)

• Each object has to be „properly“ protected
 – Prevent tampering with registry data
 – Authenticate update (and delete) transactions
• How to register Protection&Authentication settings?
 – individually, on each object we want to configure
 – how many objects do we have in the Database? Your guess?
• This needs to be streamlined - definitely!
 – usually, a collection of objects is maintained by one (or a few) entities. The same mechanisms should apply to the collection.
• Maintainer Object
 – describes an entity that is allowed to modify and/or
 – to register (additional) objects in a structured resource space
Technology: Protection & Authentication (5)

- A Maintainer Object is just „another“ regular object
 - It needs to be protected, can point to itself
 - It has to be modified now and then, \(\rightarrow\) authentication required
- The same maintner: Object is referenced
 - by all objects being controlled by that entity, by using mnt-by:
 - privilege changes can be managed in a single place
 - changes become effective immediately for all controlled objects
- Sharing responsibility is (easily and selectively) possible
 - by referencing more than one maintainer in an object „[multiple]“
 - but use the notification mechanisms!
 - CAUTION: the weakest protection mechanism always wins!!!
Technology: More than 1 set of credentials (1)

- Sometimes it takes two to party...
 - E.g. for a routing registry entry you need agreement from
 - the AS operator, the „origin:“
 - the holder of the address space, IPv4 and IPv6
- how to state „consent“?
 - add your authentication credentials:
 - manufacture the object locally
 - add your password
 - forward to the „other“ party
 - other party adds password and
 - forwards to database
- Hey – wait – they get to know my password? Yes-Indeed!
Technology: More than 1 set of credentials (2)

• A clumsy work-around...
 – If at least one party uses digital signatures, then sign first
 – forward to 2nd party, then add password and
 – forward to database robot
 – It is just a weird hack, so...

• Use digital signature authentication - please
 – manufacture object and digitally sign (don’t encrypt!)
 – forward to other party
 – other party adds signature
 – anyone can submit to the database

• AND: it is protected en-route! 😊
Technology: What’s an IRT Object?

• Management Summary: very similar to a maintainer
 – Meant to be referenced by a set of objects
 – Controls protection and authentication
 – But:
 – in many organisations there are separate entities that manage:
 • IP-Address Space, Routing Configuration
 • Security and Abuse Complaints
 • irt: is similar to mntnr:, which some differences
 – a query for irt: triggers a “tree-walk” towards the root
 – it is still evolving, e.g. dig.certif.s have been made optional
 – proposal for modifying the template, syntax and semantics
<table>
<thead>
<tr>
<th>irt</th>
<th>IRT-JANET-CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Atlas Centre</td>
</tr>
<tr>
<td>address</td>
<td>Chilton</td>
</tr>
<tr>
<td>address</td>
<td>DIDCOT, Oxon</td>
</tr>
<tr>
<td>address</td>
<td>OX11 0QS UK</td>
</tr>
<tr>
<td>phone</td>
<td>+44 1235 822 340</td>
</tr>
<tr>
<td>fax-no</td>
<td>+44 1235 822 398</td>
</tr>
<tr>
<td>e-mail</td>
<td>cert@cert.ja.net</td>
</tr>
<tr>
<td>signature</td>
<td>PGPKEY-836D7141</td>
</tr>
<tr>
<td>encryption</td>
<td>PGPKEY-836D7141</td>
</tr>
<tr>
<td>admin-c</td>
<td>AB2554-RIPE</td>
</tr>
<tr>
<td>tech-c</td>
<td>RT644-RIPE</td>
</tr>
<tr>
<td>auth</td>
<td>PGPKEY-3EA2BD2B</td>
</tr>
<tr>
<td>remarks</td>
<td>JANET-CERT coordinates security in JANET.</td>
</tr>
<tr>
<td>remarks</td>
<td>http://www.ja.net/cert/</td>
</tr>
<tr>
<td>remarks</td>
<td>JANET is the UK education and research network.</td>
</tr>
<tr>
<td>irt-nfy</td>
<td>ripe-admin@cert.ja.net</td>
</tr>
<tr>
<td>notify</td>
<td>ripe-admin@cert.ja.net</td>
</tr>
<tr>
<td>mnt-by</td>
<td>JANET-CERT</td>
</tr>
<tr>
<td>changed</td>
<td>cert@cert.ja.net 20020808</td>
</tr>
<tr>
<td>source</td>
<td>RIPE</td>
</tr>
</tbody>
</table>
[uk@worf AcoNet]$ whois -r irt-aconet-cert

irt: IRT-AConet-CERT
address: Vienna University Computer Center
address: Universitaetsstrasse 7
address: A-1010 Vienna
address: AUSTRIA
phone: +43 1 4277 14045
fax-no: +43 1 4277 9140
e-mail: cert@aco.net
signature: PGPKEY-B06F5077
encryption: PGPKEY-B06F5077
admin-c: TI123-RIPE
tech-c: TI123-RIPE
auth: PGPKEY-B06F5077
remarks: Emergency telephone number +43 1 4277 14045 (GMT+1/GMT+2 with DST)
remarks: http://www.trusted-introducer.org/teams/aconet-cert.html
remarks: This is an accredited IRT (level 2)
irt-nfy: cert@aco.net
notify: tiirt@stelvio.nl
notify: cert@aco.net
mnt-by: TRUSTED-INTRODUCER-MNT
changed: gert-henk.bakker@stelvio.nl 20030813
source: RIPE
Technology: How do you create an IRT Object?

• 1A: „Roll your own“
 – Perform all your internal logistics homework
 • still using passwords?
 • PGP/GnuPG (can be clumsy in a big shop, b.t.a.d.s.)
 • X.509 (can be a can of worms, but that’s a different story...)
 • Personal or Role keys? Backup? Revocation?
 – Check/create the persons (or role/s) you are going to reference
 – Create and submit the certificates
 – Create the irt: object and submit to the database

• 1B: Become accredited by the TI-Process
 – take care of the internal logistics, submit data to TI
 – have it registered for you

• 2: Tag your resource objects!
Technology: Some more ancilliary objects

• role:
 – Provides a mechanism to maintain contact data in one place

• organisation:
 – used by the NCC, but usable everyone
 – another mechanism to „tag“ stuff for easy lookup
 – works across structured and unstructured resource spaces
 – pretty new...

• route:
 – to label Routing Registry entries, e.g. route: 193.170.0.0/15

• domain:
 – e.g. domain: 3.4.e164.arpa, domain: 171.193.in-addr.arpa
Thank you very much!

Wilfried Wöber <Woeber@CC.UniVie.ac.at>

Vienna University, Central IT Services
Universitätsstrasse 7
A-1010 Vienna, AT +43 1 4277 14033