MAFTIA - Malicious and Accidental Fault Tolerance for Internet Applications

Paulo Esteves Verissimo
University of Lisboa

TF-CSIRT Workshop
September 2005, Lisboa

Computer systems can fail for many reasons

MAFTIA investigated ways of making computer systems more dependable in the presence of both accidental and malicious faults
MAFTIA - Malicious and Accidental Fault Tolerance for Internet Applications

- The goal of MAFTIA was to systematically investigate the 'tolerance paradigm' for constructing large-scale dependable distributed applications.
- Ideally, such systems should be constructed without vulnerabilities and faults, but this is far beyond current capabilities.
- Thus, it is essential to build systems that can tolerate the consequences of residual faults and vulnerabilities.
- An intrusion-tolerant system is one that can tolerate attacks, and continue to deliver a trustworthy service.
- MAFTIA was the first project to explore the use of fault-tolerance techniques to build intrusion-tolerant Internet-based applications.
- The project's major innovation was a comprehensive approach for tolerating both accidental faults and malicious attacks in such systems, including attacks by external hackers and by corrupt insiders.

Partners

- QinetiQ, Malvern (UK) - Sadie Creese
- IBM, Zurich (CH) - Andreas Wespi / Michael Waidner
- LAAS-CNRS, Toulouse (F) - Yves Deswarte / David Powell
- Newcastle University (UK) - Robert Stroud / Brian Randell
- Universität des Saarlandes (D) - Birgit Pftzmann
- Universidade de Lisboa (P) - Paulo Veríssimo

- Project Coordinator - Newcastle
Project Objectives

- The objective of MAFTIA was to investigate the ‘tolerance’ paradigm for building secure, dependable, networked information systems.
- Work was focused in three main areas:
 - the conceptual model and architecture of MAFTIA: providing a framework that ensures the dependability of distributed applications in the face of a wide class of faults and attacks.
 - the design of mechanisms and protocols: providing the required building blocks to implement large scale dependable applications.
 - the formal assessment of our work: rigorously defining the basic concepts developed by MAFTIA and verifying the results of the work on dependable middleware.
- The development of the MAFTIA conceptual model involved bringing together for the first time the basic ideas of the different research communities, and played a key role in unifying the project.

Principles of intrusion tolerance

- An intrusion-tolerant system must be able to continue to deliver a secure service, despite the presence of intrusions.
- So intrusions are allowed (instead of prevented), but this is not the end of the world.
Causal Chain of Impairments

Fault

Need to distinguish since detectable phenomenon (error) may have ≥ 1 cause

Error

that part of system “state” which may lead to a failure

Failure

occurs when delivered service deviates from implementing the system function

Need to distinguish since, otherwise, tolerance would be unattainable goal

Fault Tolerance

Fault Treatment

Fault diagnosis
Fault isolation
Reconfiguration

Fault

Error

Fault Treatment

Error Processing
- Error detection
- Damage assessment
- Error recovery

Failure
Attack, Vulnerability, Intrusion – AVI Composite fault model

sequence: attack + vulnerability → intrusion → failure

sequence: attack + vulnerability → intrusion → failure
Attack, Vulnerability, Intrusion – AVI

Composite fault model

sequence: $\text{attack} + \text{vulnerability} \rightarrow \text{intrusion} \rightarrow \text{failure}$

MAFTIA’s intrusion-tolerance capabilities

- Using two architectural approaches, MAFTIA developed a variety of intrusion-tolerant capabilities:
 - Secure group communication
 - Transactional support
 - Distributed authorisation service
 - Intrusion detection system
- This involved integrating components and services developed by different partners
- In addition, other partners used formal validation techniques to prove that selected MAFTIA components were secure and intrusion tolerant
Secure replication of trusted services

- Domain name server
- Certification authority
- Electronic notary
- Directory server

Single point of failure (hackers, insiders)

Replicate critical system components: \(t < n/3 \) intrusions or crashes can be tolerated.

Theoretical limits:
- \(t < n/3 \) malicious servers
- arbitrary delays

Folklore:
- No practical solution can reach these limits!

MAFTIA
- Achieves these limits, efficiently and provably secure

Malicious corruption ≠ crash failure!
Might include delaying messages arbitrarily!

Using wormholes to build secure replicated servers

Wormholes provide a basic trustworthy infrastructure that simplifies the construction of intrusion-tolerant applications in a hostile environment
Putting it all together…

Intrusion Detection

- Real world Intrusion Detection Systems generate a high number of false alarms and overwhelm the operator.
- Using data mining techniques, applied to real data, MAFTIA was able to reduce the number of false alarms by up to 90%.
- This technique is now being used by IBM Managed Security Services.

- Fix root causes / install filtering or correlation rules
- Interpret patterns / gain insights
- Data mining
Brief Snapshots of the architecture

- Fail-uncontrolled
 - Time-free
 - Arbitrary failure environment
 - Arbitrary failure protocols
 - Used in: probabilistic Byzantine-agreement based set of protocols
Fail-controlled with Local trusted components

- Time-free
- Arbitrary failure environment + LTC
- Hybrid failure protocols
- Used in: construction of the authorisation service
- Trusted to the extent of: presenting certain hardness to being broken, and of operating correctly until then

Fail-controlled with Distributed trusted components

- Time-free or timed with uncertain synchrony
- Arbitrary failure environment + synchronous DTC
- Hybrid failure protocols
- Used in: construction of malicious-F-T comm’s protocols
- Trusted to the extent of: not being feasible to subvert it
Architecture Overview

Host architecture

Middleware

- composition of micro-protocols
- uniform APIs
- different pgm'ing profiles

- **Multipoint Network**
 - adapts physical infrastructure

- **Communication Support Services**
 - implement secure group comm's

- **Activity Support Services**
 - assist participant activity
Trusted Timely Computing Base

- TTCB is a distributed security kernel that provides a minimal set of trusted and timely services, such as
 - local authentication
 - agreement on a fixed sized block of data
 - globally meaningful timestamps

TTCB Implementation

- TTCB can be a
 - *special hardware module* (e.g., tamperproof device)
 - *secure real-time microkernel* running on a workstation or PC underneath the OS

- TTCB control channel has to be both timely and secure
 - *separate physical network*
 - *virtual network* with predictable characteristics coexisting with the payload channel
AS: Intrusion Tolerant Transactional Support

- Provides standard ACID properties
- Uses fault masking to tolerate intrusions
- Main components
 - clients
 - transactional manager
 - resource manager
 - resources
- Offers a CORBA-style transaction service interface

Example:

```java
Transaction myTid = TransactionManager.begin();
// transactional operations
TransactionManager.commit(myTid);
```
Key achievements

- MAFTIA pioneered the subject of intrusion tolerance, now being researched worldwide
- It brought together, for the first time, researchers from security and dependability to tackle this subject
- It created a new conceptual model, clarifying the relationships between the different fields
- It designed, implemented, and demonstrated the first coherent system architecture for intrusion tolerance
- It invented a number of ground-breaking software components, and used formal methods to validate their correctness
- It thus laid the foundations for an effective defence against the ever-growing threats against the global information infrastructure
- MAFTIA technology has already been incorporated into product and service offerings from IBM

The End

- www.maftia.org