Network Based On-demand/Grid System (NBGS)

NBGS team
Cisco Systems

February 2006
NBGS Phase I
NBGS Features

- The main feature of NBGS is on-demand, dynamic, automated and quick provisioning of network resources that may be requested by Grid clients (Grid middleware, tools) before these clients can schedule application jobs to run on available Grid resources (compute resources).

- The network resources are requested via abstract and simple interfaces that hide the details of network resources and complex steps of underlying network provisioning.

- For example, QoS is abstracted as only bandwidth and priority (via an abstract interface in NBGS called the CosLink).

- But the underlying QoS may be provided end-to-end as a combination of:
 - Ethernet QoS (802.1p)
 - IP (based on TOS marking)
 - DiffServ (based on DSCP marking)
 - MPLS QoS (combination of MPLS EXP marking and MPLS TE LSP)
NBGS Architecture – Phase I

NBGS Testbed devices:
- Cat 4500 (Linux machines connected to these)
- Cat 3750 Metro (CE Routers)
- 7204 (MPLS PE Routers)
- 7206 (MPLS P routers)

On-demand Network Service System
Configuration & Provisioning:
- E2E QoS, MPLS TE LSP

CMP (Device Management)
- Topology/Inventory/Result
- XML/BQL

Client
- Transfer Data
- Launch computation
- WSRF
- XML/HTTP/SOAP

Globus GT4
- RFT/GridFtp
- GRAM

Web Services Interface
- XML/HTTP/SOAP

XML/HTTP/SOAP
- Launch computation
- WSRF

DB
- NBGS

NBGS Testbed:
- Catalyst
- CE1
- Site1
- PE1
- P1
- P2
- PE3
- Site3
- CE3
- Catalyst
- CE2
- Site2
- PE2
- PE4
- Site4
- Catalyst

Configuration & Provisioning:
- E2E QoS, MPLS TE LSP
NBGS Provisioning Flow

Request for E2E network resources (BW, QoS) between two servers on which Grid application jobs are scheduled to run

On-demand Network Service System
Configuration & Provisioning: E2E QoS, MPLS TE LSP

CMP (Device Management)

C1: Classification based on source (server IP); Marking (DSCP) based on Priority; Policing on BW

C2: Queuing based on Priority

C3: Map DSCP to MPLS EXP for priority Queing through MPLS network

C4: Configure MPLS TE LSP; Designate TE LSP for priority traffic so that priority traffic goes to the priority TE LSP
POC Demo - purpose

• The main purpose of the NBGS POC prototype project is to:

• Show on-demand, quick, and dynamic provisioning of network resources (QoS, bandwidth, MPLS TE LSP, etc.) as requested by Grid clients (Grid middleware, tools) before these clients can schedule jobs to run on available Grid resources (compute resources)

• Show that the existence of on-demand/dynamic network resource provisioning interfaces (provided by NBGS) may improve overall performance of Grid applications, that is,

 • application output (such as video rendering output) produced in shorter time-frame than is otherwise possible

 • application output is furnished over the network to the source in time and with better quality (for example, quality streaming of rendered video output to a client)
POC Grid Application – Post-production Video Rendering

- A high-quality video (of several GB size) is rendered on four Grid machines after editing actions are selected on the video (rendering is compute intensive → an hour-long video may take several hours to render)

- Brief workflow (the workflow is embedded in a script) of the POC demo:
 - Video editing actions (video/audio effects) are chosen using Cinelerra (Linux tool)
 - Video file (frames) is divided into a number of segments using Cinelerra.
 - Rendering computers (four machines in the demo) are selected (Cinelerra rendering engines are already loaded on these machines)

- Large file transfers may add substantial time in a loaded network to the overall processing time (from start to the time when output is produced and merged)
 - Need priority data transfer
 → need proper QoS

- Rendered video may be visualized during or after rendering (for checking edited result)
 - Stream video
 - Video on-demand
 → Need proper QoS
POC Grid Application – Post-production Video Rendering contd...

• For each selected (remote) Grid machine (Mk)

 • NBGS QoS/BW resource provisioning interface (CosLink) is invoked with the machine (E1), where the main script resides, as source, and Mk as destination

 • Data transferred to Mk (using Globus WS-GRAM/RFT)

 • When data transfer completes, network resources are claimed by invoking an NBGS interface (rendering computation may take long time, hence network resources can be returned to pool)

 • Rendering computation is invoked (via Globus WS-GRAM)

 • Once rendering completes (Globus WS-GRAM on Mk notifies E1), NBGS CosLink invoked again with Mk as source and E1 as destination

 • Rendered Data transferred to E1

 • All the rendered video segments are merged on E1

 • Video streaming client (C1) is selected

 • NBGS CosLink is invoked between E1 and C1

 • Rendered video is streamed to C1
POC Grid Application – Post-production Video Rendering contd...

• Various options are used in the demo to show difference between NBGS and non-NBGS based rendering:
 • Single machine rendering
 • Rendering on Grid (four machines) and output streaming *without* invocation of NBGS interfaces
 • Rendering on Grid (four machines) and output streaming *with* invocation of NBGS interfaces.
NBGS Team

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Field, other</th>
</tr>
</thead>
</table>
| **NMTG Project leads:**
Masum Z Hasan
Wayne Clark | Horst Dumcke
Dirk Schroetter
Monique J Morrow
Peter Tomsu |
| **NMTG development Manager:**
Dragan Milosavljevic | |
| **NMTG development team:**
Eileen Liu
Miro Krandic
Umesh Tyagi | |
| **NMTG development Director:**
Geng Lin | |
| **NMTG VP, CTO**
Nino Vidovic | |
NBGS Post Phase I
NBGS Architecture – Post Phase I
Towards all-encompassing Grid – our goal

<table>
<thead>
<tr>
<th>Systems/Infrastructure</th>
<th>Parallel Machines or Supercomputers (MPPs, Vector, NUMA)</th>
<th>Dedicated HPC Clusters</th>
<th>Scavenge low-end systems</th>
<th>Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Absolute HPC Performance</td>
<td>HPC with better Price and Performance ratio</td>
<td>Any application</td>
<td>Cost-effective resource sharing and on-demand resource access/provisioning across LAN, MAN, WAN</td>
</tr>
<tr>
<td>Targets</td>
<td>Large scale SMPs; special purpose</td>
<td>Clusters</td>
<td>PCs, Servers, Workstations</td>
<td>All on the left + Network factored in (L1/2/3/4 Network Resources factored in)</td>
</tr>
<tr>
<td>Coupling</td>
<td>Tight</td>
<td>Tight, Loose</td>
<td>Loose</td>
<td>Loose</td>
</tr>
<tr>
<td>Communication</td>
<td>Shared memory</td>
<td>Message passing</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>Network</td>
<td>Bus, backplane</td>
<td>Infiniband, GigE</td>
<td>All (LAN, MAN, WAN) and Internet scale</td>
<td>All (LAN, MAN, WAN) and Internet scale</td>
</tr>
</tbody>
</table>
Other potential post Phase I support
NBGS and Data Center
Typical Network with DC

- Network with distributed DC and remote/customer sites
- Yellow region: typical Grid domain with L7 Grid resources
 - Compute: PC, Server, Cluster, Supercomputer
 - Storage

NBGS may provision only a segment of the network: for example, only within the DC and remote sites and not MAN/WAN

Available resources, shown as ● are advertised (via a directory service, such as Globus MDS); not all L7 resources may be Grid resources

A Grid client (such as a scheduler) checks resource availability information, selects useful resources, then loads application/task images on selected resources → On-Demand resource provisioning

Typically DC applications, such as SAP CRM are tied to one or more servers; With the aid of on-demand service or Grid, when there is more demand on SAP CRM server(s), more instances of the application can be provisioned on available resources (servers) on-demand
NBGS and HPC and Cluster Grid
HPC – Molecular Dynamics

• Remote Visualization during Simulation

• Molecular Dynamics
 • Application in Bio-technology: Protein Folding, Drug Design

• Extensive communication between processors exchanging large quantities of data at every time step even with optimization;
 Reason:
 • Atoms may interact over distances of several nanometers
 • Atoms may freely wander from one region to another, requiring processors to renegotiate ownership of such atoms

• May require millions of time-steps
Remote Visualization during Simulation

Enterprise: ABC Site 1
Cluster 1
- 200Mbps

Enterprise: ABC Site 2
Cluster 2

Enterprise: XYZ Site 1
Cluster 2

Network

200,000 Atoms per partition
Precision: 64 bit
Coordinates: 3 dim (x, y, z)
Variables: 10
Memory: $64 \times 3 \times 10^2 \times 2 \times 10^5 = 384 \times 10^6 \approx 400 \text{ Mbit}$
Time Step: 1 sec: 400Mbit generated at each time step
Assuming 50% atoms interacts with other (neighbor) partition \(\rightarrow \) BW between nodes 200Mbps

L7 resource requirements:
- # of CPUs: 16
- CPU speed: 800 Mhz
- Memory: 200MByte each
- Local Disk: 1GB each

Rendering CPU:
- 1
- CPU speed: 1 Ghz
- Memory: 100 GB

L1/2/3/4 resource requirements:
- BW Between Cluster pairs = 200Mbps
- QoS Priority = 2
- BW Between Cluster and Renderer = 400Mbps
- QoS Priority = 2
- BW Between Renderer and Workstation = 600Mbps
- QoS Priority = 1

25 Frames/sec visualization on 24bit/pixel
1024*1024 resolution
Workstation displays \(\rightarrow \) 25*24*1024*1024 ~ 600Mbps

Presentation_ID © 2005 Cisco Systems, Inc. All rights reserved. Cisco Confidential
Use Case - Network-aware Task Distribution –
Distribute tasks based on advertised configured resources -
Provision network Resources on-demand

L7 resource requirements:
- # of CPUs: 16
- CPU speed: 800 Mhz
- Memory: 200MByte each
- Local Disk: 1GB each

[Rendering] CPU: 1
- CPU speed: 1 Ghz
- Memory: 100 GB

L1/2/3/4 resource requirements:
- BW Between Cluster pairs = 200Mbps
- QoS Priority = 2
- BW: Between Cluster and Renderer = 400Mbps
- QoS Priority = 2
- BW Between Renderer and Workstation = 600Mbps
- QoS Priority = 1

Availability advertised into MDS:
- C1-C2: BW=50Mbps, Pr=3
- C1-C3: BW=300Mbps, Pr=2

C1-C3 satisfies requirements, not C1-C2

S1: Get L7 resource information and decide on job distribution sites
S2: Provision network resources
S3: Distribute jobs

Globus MW components:
- WS-MDS: Resource Directory
- WS-GRAM: Task distribution “protocol”
- WS: Web Services based
- LS: Local Scheduler (such as LSF, SGE)