Organic.Edunet

Nikos Palavitsinis

Greek Research & Technology Network
Structure

• Introduction
• Organic.Edunet Architecture
• Metadata AP
• Tools (portal and confolio demo)
• Quality Issues
• Challenges
In a nutshell...

A Multilingual Federation of Learning Repositories with Quality Content for the Awareness and Education of European Youth about Organic Agriculture and Agroecology
Objectives (1/5)

• Support stakeholders producing content about OA & AE
 • Describe according to multilingual, standard-complying metadata
 • Publish in online federation of learning repositories
Objectives (2/5)

- Deploy a multilingual online environment on top of the online federation of repositories
- To facilitate end-users’ search, retrieval, access and use of learning resources

the Organic.Edunet Web portal
Objectives (3/5)

- Study educational scenarios to support the teaching of OA & AE relevant topics
 - Use Organic.Edunet Web portal to find learning resources in the repositories

- Targeted user organisations
 - High-schools
 - Agricultural universities
Objectives (4/5)

• Involve various European schools & universities to evaluate project results
 • Focused pilot trials within Organic.Edunet partner institutions
 • Open validation events within Organic.Edunet affiliated institutions
Objectives (5/5)

• Create organisational structures to support the sustainability of project results

• Reinforce the cooperation of stakeholders in the OA & AE content area
Organic.Edunet Architecture

To make a long story short...
software reuse

- existing software components adapted, extended, integrated
 - SCAM (backend) repository
 - SHAME metadata editor
 - Confolio portfolio Web frontend
 - LOMR semantic repository & search
 - CollaFiS collaborative filtering service
Organic.Edunet Federation of Learning Repositories

TERENA TF Media Meeting 18-19 March, 2010, Athens, Greece

learning resources exchange module
Semantic Services Module

Organic.Edunet Web Portal Module

Semantic Services Module

Ontologies

Web Service Query Interface

Query Framework

uses

WSML LOMR

LOMR Module

LOM2WSML Converter

Harverst Mechanism

Learning Repository Management Module

TERENA TF Media Meeting 18-19 March, 2010, Athens, Greece
Metadata

Profiling IEEE LOM to fit the Organic Agriculture and Agroecology fields
process

Metadata Standard

Metadata Application Profile

Used in specific community
E.g. Publishing houses of agricultural books

Profiled
Refined
Adapted
…to meet context-specific community needs

IEEE LOM
outcomes: metadata

- Multilingual version of metadata schema for annotating learning resources
 - Organic.Edunet IEEE LOM Application Profile (AP)
 - based on European Schoolnet’s LRE LOM AP
- extensive review of existing schemas
 - through an expert group of CEN/ISSS WS-LT
general elements

- General information about the LO
 - Specialized “Coverage” element with values from the LRE Thesauri “160. Countries and Geopolitical Areas”
meta-metadata & life cycle

- Adopted values for the “Contribute.Role” element from LRE
- Data about past and current state of the LO
technical

- Kept the LOM elements and value spaces
• Adopted the LRE v3.0 Vocabulary for:
 – Learning Resource Type
 – Intended End User Role
 – Context
rights

• Rights.Description
 – Creative Commons licences were incorporated
 – With two simple questions:
 • Will you allow commercial uses of your work?
 • Allow modifications of your work?
relation

• Relation.Kind
 – Adopted the values from LRE v3.0
 – Added them to the existing LOM ones
annotation

- Annotation.Description
 - Restricted the LOM value space
 - Vocabulary based on the Organic.Edunet quality strategy
 - Indicates the quality status of a resource
classification

- Organic.Edunet Ontology
- AGROVOC Thesaurus
- CAB Thesaurus
- LRE Thesauri
Organic.Edunet Tools

Confolio Repository Suite of Tools
&
Organic.Edunet Federation Web Portal
Repository Tools demo
Metadata Quality

“Quality is never an accident; it is always the result of high intention, sincere effort, intelligent direction and skillful execution; it represents the wise choice of many alternatives”

William A. Foster
Metadata – Repository

• Quality of Metadata
 – Mainly manual annotation
 • Errors are 100% human generated!
 – Many cases of resources with:
 • All Mandatory elements filled
 • Half of the Recommended
 • Few or none of the optional
Our solution

• Random manual sampling of resources
 – Checked the metadata
 – Identified mistakes
 – Asked partners to correct these and all similar cases
Our solution

• Set up a Metadata Quality Review Mechanism
 – Created a Metadata Review Grid assessing:
 • Completeness, Accuracy, Appropriateness, Correctness, etc
 – Assigned 120 resources to 24 reviewers
 • They assigned other partners’ resources only
 – Collected feedback and followed up with comments, corrections
Challenges
challenges

• hidden tasks associated to multilingualism of the tools
• additional back-end services required
 • links change over time → automatic link checker needed
 • support of peer-review quality mechanism for the resources
challenges

• High quality metadata support sufficient searching
 • Lacking metadata fields make resources invisible

• High quality metadata require annotation effort from the experts
 • How do we get the experts to spend the extra time?
Thank you!