This chapter introduces the user to the concept of setting up advanced services. There are sections for configuration and basic operations of gateways (Section 5.1), supplementary services (Section 5.2) and multipoint conferencing (Section 5.3).

5.1 Gatewaying

Please refer to Section 4.1 for a general architecture of SIP-H.323 and PSTN gatewaying. This section deals with an analysis of the characteristics of gateways and the configuration principles for the gatewaying functions to be set up in an advanced environment. The topics detailed in this section range from VoIP - PSTN gateways to SIP - H.323 Gateways configuration, ending with short considerations on accounting.

5.1.1 Gateway interfaces

One of the most important interfaces in IP Telephony is between a PBX and a voice gateway (VoGW). It enables communication between PBX phones and IP phones (H.323 or SIP) and can also facilitate communication to PSTN see (Figure 5.1). When a PBX phone dials a number which is not another PBX extension, the PBX can forward to the voice gateway either calls to numbers beginning with a specified prefix (so called access prefix that the users dials before the required number to get to IP Telephony network) or all calls. Similarly, a voice gateway can forward to the PBX, calls to PBX phones. When a PBX phone dials a number in a PSTN, the PBX can forward the call directly to the PSTN (e.g., over ISDN) or it can forward the call to a voice gateway, which forwards it to a selected PSTN operator over the Internet.

There are different kinds of PBX to voice gateway interfaces with different features and costs. Your choice of the interface-type will probably depend on which features you require: acceptable cost, availability and whether there is already some interface present in the PBX and the voice gateway. In this section, some technical details are provided on different kinds of PBX-to-voice gateway interfaces. Signalling systems are also described briefly, such as Channel Associated Signalling (CAS), E&M signalling methods, Q-signalling and the Q.931 call control protocol and examples are given of exchanged messages during correct communication.

5.1.1.1 Subscriber Loop

A subscriber loop, also called a U-interface, is a 2-wire interface used primarily when connecting a telephone set to a Subscriber Line Module Analogue (SLMA). SLMA is the name of the
analogue module in a PBX. A corresponding module in a voice gateway is called a Foreign Exchange Station (FXS).

FXS and SLMA modules can also be interconnected to trunk modules. Trunk Module Analogue (TMA) is the name of the trunk module on the PBX side, and Foreign Exchange Office (FXO) is the common name of the corresponding module in a voice gateway.

A subscriber loop can be used in any of the following configurations:
- Telephone to SLMA or FXS;
- FXS to TMA;
- FXO to SLMA.

There are two operating modes:
- FXO/TMA - telephone emulation (as common terminal equipment). This is a very simple mode. It only detects a ringing signal and provides digit dialling and switching between off-hook (to close the loop) and on-hook (to open the loop);
- FXS/SLMA - subscriber line circuit emulation. In this mode, the SLMA or FXS waits for a closed loop that will generate a current flow and a signalling tone of 425 Hz (with 10% tolerance). The Subscriber Line Interface Circuit Emulation (SLIC) provides the functions of BORSHT (Battery, Overvoltage, Ringing, Supervision, Hybrid 2/4 wires and Testing).

The two most common methods for end-loop signalling are loop-start and ground-start signalling. DTMF (Dual Tone Multi-Frequency) is commonly used to transmit telephone number digits. DTMF tones identify numbers 0 through 9 and the * and # symbols. Digits are represented by a particular combination of two frequencies from the high group and the low group. Each group includes only four frequencies. Out of sixteen possible combinations, twelve are used on the keypad. DDI (Direct Dialling In) is possible only through a DTMF suffix, that is, during the connection time when the calling party normally is already paying for the connection.
5.1.1.2 E&M interfaces

E&M is commonly explained as both ‘Ear and Mouth’ and ‘recEive and transMit’. E&M interfaces allow DDI without restrictions before the conversation starts. There are several different types of E&M interfaces according to signalling and number of interconnecting wires. Type V (see Figure 5.2) is very popular in Europe. In the commonly used 6-wire interconnection, the individual wires are used as follows:
- one pair of wires (wires E and M) is used for signalling;
- one pair of wires is used for the outgoing voice path;
- one pair of wires is used for the incoming voice path.

This 6-wire connection can be reduced into 4-wires:
- one pair of wires (wires E and M) is used for signalling;
- one pair of wires is used for the voice path in both directions (which can cause a problem with echo cancellation and inhibits a possibility to use an amplifier).

Figure 5.2 E&M signalling, type V

Signalling is carried out with direct current via the E & M control wires for call setup and tear down, pulse dialling and remote blocking. DTMF signals can alternatively be used for dialling. The E&M signalling can operate in several modes:
- continuous signal;
- wink start signal;
- delay dial;
- immediate dial.

5.1.1.3 E1/CAS trunk

CAS (Channel Associated Signalling) exists in many varieties that operate over analogue or digital interfaces. A common digital interface with CAS signalling is called E1 (European version). The physical layer works in accordance with the ITU recommendation G.703/G.704 for PCM30/32. The endpoints continually send **Backward** and **Forward** marks in 16 TSLs (Timeslot of PCM30/32, bits ABCD) as a supervision signal to indicate various states of the connection. Additionally, the MFC-R2 (Multi Frequency Compelled) signalling is used (in TSL 1-15 and TSL
17-31) to support for several features:
- malicious call tracing (used to transfer calling party numbers);
- override authorisation;
- free calls;
- called party hold.

5.1.1.4 ISDN Access Interfaces

ISDN (Integrated Service Digital Network) is a currently preferred method of PBX to VoGW interconnection. It is described in more detail and some illustrative examples of exchange of its Q.931 signalling messages are given. ISDN is a system of digital connections allowing the establishment a call with end-to-end digital connectivity of nx64kbps. Original recommendations for ISDN were in CCITT Recommendation I.120 (1984), which described some initial guidelines for implementing ISDN. The first commercial implementation of ISDN was in PBX Hicom300 (Siemens AG). Several different signalling protocols have emerged. It was the 1TR6 protocol in Germany, NI (National ISDN) in the USA and the French National ISDN VN3 protocol in France. The absence of an international standard led each European country to make its own version of ISDN, which meant incompatibility and increased costs. Twenty-six communication organisations signed the ‘Memorandum of Understanding on the Implementation of a European ISDN’ in 1992. The signing countries were obliged to offer a common technological substructure for ISDN network development, connecting all of Europe. As a result, Q.931 signalling has been internationally standardised.

Two types of access methods exist for ISDN:
- BRI (Basic Rate Interface);
- PRI (Primary Rate Interface).

BRI delivers two 64 kb/s B channels and one 16 kb/s D channel. The reference configuration of ISDN defined in the ITU specification I.411 is illustrated in Figure 5.3

Figure 5.3 ISDN configuration

U interface is a two-wire interface from the telephone exchange; it supports full-duplex data transfer over a single pair of wires: only a single device can be connected to a U interface.

T interface is between network terminations NT1 and NT2: NT1 converts two-wire U interface into four-wire T interface.
S interface and T interface are electrically equivalent. ISDN devices include an NT-2 in their design. The NT2 communicates with terminal equipment TE1 (ISDN terminal) or TE2 (non-ISDN, connected to NT2 via terminal adapter), and handles the layer 2 and layer 3 ISDN protocols.

Network Termination NT is divided into NT1 and NT2; NT1 works in Layer 1 and NT2 in Layers 2 and 3. NT1 and NT2 are connected by a four-wire T interface.

Terminal Equipment TE1 is an ISDN compatible device (TE1 is connected to NT2 via a four-wire S interface).

Terminal Equipment TE2 is a non-ISDN-compatible device that requires terminal adapter interconnection.

Terminal Adapter provides an ISDN-compliant interface to NT and a standard interface to TE2 (such as RS-232, USB, X.21, etc.).

Because a PBX can provide NT2 functions, the T interface is commonly used for interconnection of a PBX and a Voice Gateway. The PBX works in the user-side operation mode and the Voice Gateway in the network-side operation mode.

5.1.1.4.1 Q.931

The L2 and L3 interface of ISDN is also referred to as the Digital Subscriber Signalling System No.1 (DSS1). The L2 protocol of ISDN is ITU Q.920/Q.921 and the L3 protocol is ITU Q.930/Q.931. Q.932 enables general procedures for accessing and controlling supplementary services.

Q.931 provides call control capabilities. Some of the most important Q.931 messages are:
- Setup;
- Setup acknowledge;
- Call proceeding;
- Progress;
- Alerting;
- Connect;
- Connect acknowledge;
- Disconnect;
- Release complete;
- Information.

The destination digits can be sent in two forms during call-setup:
- complete called party number in the SETUP message, also known as the en-bloc signal;
- one by one in separate messages, also known as the overlap signal

An example of Q.931 Call control messages in call-setup with the en-bloc signal is shown in Figure 5.4. This example corresponds to the following setup:
- Cisco AS5300 was used as a Voice Gateway and debugging was enabled with ‘debug isdn q931’ command;
- The call was initiated from the Technical University in Ostrava to the Czech Technical University in Prague. The PBX was connected through ISDN/PRI and the called number was sent as the en-bloc in the SETUP message;
- The Calling Party Number was 596991699
- The Called Party Number was 224352979

Figure 5.4 Q.931 call control messages in call-setup with the en-bloc signal

Jun 24 18:30:12.817: ISDN Se0:15: RX <- SETUP pd = 8 callref = 0x0002
 Sending Complete
 Bearer Capability i = 0x8090A3
 Channel ID i = 0xA9838E
 Calling Party Number i = 0x00, 0x83, '596991699', Plan:Unknown, ...
 Called Party Number i = 0x80, '224352979', Plan:Unknown, Type:U...
 High Layer Compat i = 0x9181
Jun 24 18:30:12.837: ISDN Se0:15: TX -> CALL_PROC pd = 8 callref = 0x8002
 Channel ID i = 0xA9838E
Jun 24 18:30:13.129: ISDN Se0:15: TX -> ALERTING pd = 8 callref = 0x8002
 Progress Ind i = 0x8188 - In-band info or appropriate now available
 Progress Ind i = 0x8182 - Destination address is non-ISDN

An example of Q.931 call control messages in call-setup with the overlap signal is shown in Figure 5.5.

Figure 5.5 Q.931 call control messages in call-setup with overlap
This example corresponds to the following setup:
- Cisco AS5300 was used as a Voice Gateway; debugging was enabled with a `debug isdn q931` command;
- The call was initiated from the Czech Technical University in Prague to PSTN (Public Switched Telephone Network); the PBX in Prague was connected through ISDN/PRI and the called number was sent as the digit by digit (overlap) in the `SETUP` and `INFORMATION` messages;
- The Calling Party Number is 224355406;
- The Called Party Number is 224324997.

Jun 24 18:31:43.092: ISDN Se1:15: RX <- SETUP pd = 8 callref = 0x540A
 Bearer Capability i = 0x8090A3
 Channel ID i = 0xA1838E
 Progress Ind i = 0x8183 - Origination address is non-ISDN
 Calling Party Number i = 0x31, 0x81, '224355406', Plan:ISDN, Type:.
 Called Party Number i = 0x81, '2', Plan:ISDN, Type:Unknown

Jun 24 18:31:43.104: ISDN Se1:15: TX -> SETUP_ACK pd = 8 callref = 0xD40A
 Channel ID i = 0xA9838E

Jun 24 18:31:43.808: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '2', Plan:ISDN, Type:Unknown

Jun 24 18:31:45.152: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '4', Plan:ISDN, Type:Unknown

Jun 24 18:31:46.536: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '3', Plan:ISDN, Type:Unknown

Jun 24 18:31:47.564: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '2', Plan:ISDN, Type:Unknown

Jun 24 18:31:48.896: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '4', Plan:ISDN, Type:Unknown

Jun 24 18:31:51.012: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '9', Plan:ISDN, Type:Unknown

Jun 24 18:31:52.696: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '9', Plan:ISDN, Type:Unknown

Jun 24 18:31:54.480: ISDN Se1:15: RX <- INFORMATION pd = 8 callref = 0x540A
 Called Party Number i = 0x81, '7', Plan:ISDN, Type:Unknown

Jun 24 18:31:54.604: ISDN Se1:15: TX -> CALL_PROC pd = 8 callref = 0xD40A
Jun 24 18:31:55.684: ISDN Se1:15: TX -> ALERTING pd = 8 callref = 0xD40A
 Progress Ind i = 0x8288 - In-band info or appropriate now available

- 5.1.2 Gatewaying from H.323 to PSTN/ISDN

One of the most useful H.323 services is the ability of VoIP calling parties (H.323 world) to reach the PSTN (classic telephony world). This service is provided by H.323/PSTN gateways and the functionality they provide is:
- forwarding of incoming calls from the PSTN and call signalling to H.323;
- termination of incoming calls from H.323 and forwarding to the PSTN;
- accounting for calls utilising the gateway;
- optional support for H.320 (ISDN)-capable conferencing endpoints.
This section introduces the basic principles on how to perform gatewaying using H.323. Basic configuration guidelines and operational principles of commercial and open source gatekeepers are described here in order to detail how to set up gatekeepers for interconnection with PSTN. Moreover, details on the configuration of gateways are given in order to provide guidelines on how to configure gateways to be part of an H.323 network.

5.1.2.1 Using a RADVISION OnLAN 323 L2W-323 Gateway

The RADVISION OnLAN 323 L2W-323 Gateway is a hardware-based H.323 to H.320 gateway, which allows H.323 endpoints to reach destinations on the PSTN or specialised H.320 (ISDN-based) endpoints and vice versa. The L2W-323, in its most common configuration, has four Ethernet (LAN) interfaces and two ISDN BRI (WAN) interfaces. It is designed for stand-alone use and thus integrates the functions of a gatekeeper, as well as a gateway, under the same hood. It is presently not available for sale but it has quite a large installed base, considering that the Cisco 3520 is essentially the same product marketed by Cisco.

5.1.2.1.1 Installation

Its installation is straightforward, requiring merely power, a network interface, BRI ISDN interfaces and a PC on the same LAN for setting-up initial configuration parameters through a windows-based application. To manage the device, install the RADVISION OnLAN Tools from the installation disks, by running the setup.exe program on the PC. Since the gateway has no network configuration to begin with, the PC running the software will have to be on the same LAN in order to perform initial network setup of the unit. After specifying an IP address for the Ethernet interface of the unit, the configuration application can then be run remotely.

5.1.2.1.2 Configuration

When running the configuration application, you will need to specify the IP address of the target device, or choose one from the list of detected devices on the same LAN. After entering the administrative password, you are presented with a window where you specify which configuration to edit. The options are to edit the currently-loaded configuration of the device, or a previously saved-to-file configuration. The next step is to select which functionality to configure: the gatekeeper (select Gatekeeper Setup) or the gateway (select Unit Setup).

Only the second option is of interest, since the gateway can register with any of the gatekeepers detailed above, and the built-in gatekeeper can be turned off since it provides only basic functionality. Select Unit Setup and proceed with Unit Identification and Date/Time options, which are informational only, by pressing the Next button.

The next screen, Miscellaneous Parameters, presents a number of configuration options. The critical settings are the ones for Default Gatekeeper and for Default Router IP, which you must set to the IP address of the gatekeeper controlling your zone, and the IP address of the router (network gateway in the IP protocol sense). The rest of the settings can be left at their default state.
The next screen, **LAN Port Settings**, is responsible for configuring the Ethernet interfaces. There are four screens, one for each of the four Ethernet ports. Configuring just one interface with an **IP Address** and **IP Mask** is sufficient. A summary screen with settings for all four ports follows.
Figure 5.8 OnLAN miscellaneous parameters and gateway registration on gatekeeper

The next screen, **Services Definition Table**, is the most important one, since it defines the services that the gateway will make available to calling parties, by registering them with its controlling gatekeeper.

Figure 5.9 OnLAN-defined gateway services
Each service definition includes information about the **Prefix**. It is called with the **Call Type**, which can be voice-only or H.320 (voice and video), and the **Maximum Bit Rate** which a call of this type and will be required. By defining different services, the calling parties are given the option to choose the type of call they can make, based on the service prefix they dial, assuming the prefixes are well known to the users, or at least that the gatekeepers have pre-selected default gateway services. For example, if the gateway defines a voice-only service with a prefix of e.g., 9, the administrator of the gatekeeper will likely make this the default service to route all calls to the gateway. Any user requiring a voice and video call will have to know the service prefix, e.g., 8, for that special type of call. The L2W gateway will already have template services defined, but you can add, edit or delete services as needed. There is certainly one thing you will need to customise and that is the service prefixes, in order to make them match your local dialling scheme.

![OnLAN editing of a service definition](image)

The next screens refer to **WAN Port Settings** which, for an ISDN interface, present relative settings. The country-specific ISDN protocol must be selected, and the **Phone Number** connected to the ISDN port can be indicated. Also, specific services can be enabled or disabled for this WAN port, assuming more than one type of WAN port is available, each with distinct capabilities. A summary screen with settings for all WAN ports follows.

At the end of the configuration wizard, you are given the option to save the new configuration settings in a file before downloading them to the gateway itself. At this point, the gateway is reloaded and the new settings are applied.

5.1.2.1.3 Operation

Immediately after configuration and reload, the gateway attempts to register its services with the gatekeeper. This must be verified on the gatekeeper-side before attempting to use the gateway's services. Specifically, there are two things that must be checked: a) the registration of the gateway on the gatekeeper and b) the registration of its service prefixes on the gatekeeper. For example, on the Cisco MCM Gatekeeper, the appropriate commands would be:

```
> show gatekeeper endpoints
GATEKEEPER ENDPOINT REGISTRATION
================================
CallSignalAddr Port RASSignalAddr Port Zone Name Type Flags
```

P.145
At least one entry should refer to the registration of the gateway, indicating its IP address, the type of registration (H320-GW) and the H.323 alias of the unit (GW4134522623).

> show gatekeeper gw-type-prefixes

GATEWAY TYPE PREFIX TABLE
=========================
Prefix: 92*
 Zone gk.mydomain.org master gateway list:
 194.257.8.150:1820 GW4134522623

Prefix: 93*
 Zone gk.mydomain.org master gateway list:
 194.257.8.150:1820 GW4134522623

A listing of all registered services at the gatekeeper should include an entry for each of the services defined on the gateway, indicating the prefix, and the IP address and the H.323 alias of the gateway to forward calls to. If registration of services with the gatekeeper is confirmed, the gateway is ready to service calls, which can be traced through the gatekeeper tools.

The gateway can be monitored by a command-line interface only:

> telnet 194.257.8.150
Trying 194.257.8.150...
Connected to 194.257.8.150.
Escape character is '^]'.
VxWorks login: admin
Password:
->

At this prompt, no command can be entered to explicit logs, but passive monitoring of events is provided. Logs on this interface can be overwhelming, but the L2W gateway does not provide any other means of debugging, or monitoring. Please note that in the current release a bug makes the L2W gateway unregister from the gatekeeper after some time, making its services unavailable to the zone. Check often for registration of gateway services and in case they are lost, reboot the gateway to force gatekeeper registration again. The most flexible way to reboot the gateway is to use the telnet interface, login, and apply a Control-X command.

5.1.2.1.4 Authentication
In environments where gatekeeper registration is authenticated, the gateway has to provide authentication credentials in order for the gatekeeper to allow its registration. If H.235 authentication is required by the gatekeeper, the L2W gateway does not support it and administrative measures must be taken at the gatekeeper-side to exempt it from authentication. If authentication by H.323 alias and password is required, e.g., for the Cisco MCM piggy-back mechanism, the L2W gateway has a fixed H.323 alias that it tries to register with the gatekeeper.
(of the format GWnnnnnnnnnn, where n is a number generated by the gateway itself and is not configurable). The administrator must make sure that this specific H.323 alias is allowed to register on the gatekeeper with no password. Similar measures must be taken in case an IP-address plus H.323 alias-authentication method is applied on the gatekeeper-side.

5.1.2.2 Gatewaying H.323 using Cisco

In this subsection, an example of how a Cisco Voice Gateway should be configured for interconnection with a PBX is presented. See Figure 5.11 for an illustration of the interconnection. The same procedure could be used for interconnecting a Cisco Voice Gateway with PSTN/ISDN.

![Cisco voice gateway interconnection](image)

Figure 5.11 Cisco voice gateway interconnection

Gateway configuration can be divided into three main parts:
- Protocol configuration;
- Interface configuration;
- Dial-peer configuration.

The example corresponds to the following setup. As a Voice Gateway is used, Cisco 2651XM with appropriate IOS is connected through PRI/ISDN to the PBX and is registered to a gatekeeper. Examples of the configuration were cut off from the Cisco CLI command and show running-config output and comments.

5.1.2.2.1 Protocol configuration

Gatekeeper peering and gateway id are set up in this section. The Cisco gateway could serve as a voice gateway for both H.323 and SIP protocols at the same time, but the SIP protocol-specific part is configured in a completely different configuration section of the gateway (not the sip gateway, see Section 5.2.2). Use of the h323-gateway command is recommended, set in a loopback interface configuration section. Use of a loopback IP address in registration and
accounting messages helps to manage the system easily if the gateway has more than one interface used for VoIP.

h323-gateway voip interface
h323-gateway voip id GK1-CESNET2 ipaddr 195.113.113.131 1718 priority 100
h323-gateway voip id GK2-CESNET2 ipaddr 195.113.144.85 1718
h323-gateway voip h323-id VoGW-ZCU
h323-gateway voip tech-prefix 1#

Voice gateway is registered to gatekeeper GK1-CESNET2
A second gatekeeper GK2-CESNET2 is used as backup
The h323-id of the Voice Gateway is VoGW-ZCU. It is checked on the gatekeeper and is needed for successful registration

5.1.2.2.2 Interface configuration
Interconnection to a PBX or a PSTN also has to be properly set up at interface level (router(config-if)#). Telephony interface configuration is independent on the used VoIP signalling protocol. In this section, there are configured ISDN parameters for signalling the channel (the sixteenth channel has number 15 by Cisco).

interface Serial0/0:15
 isdn switch-type primary-net5
 isdn overlap-receiving T302 5000
 isdn protocol-emulate network
 isdn send-alerting
 isdn sending-complete
 isdn outgoing-voice info-transfer-capability 3.1kHz-audio

primary-net5 is the setting of the DSS1 (EuroISDN) signalling protocol on the primary interface PRI (basic-net3 is used on the BRI).

timer T302 is the interval in milliseconds for overlap mode (the interface waits 5 seconds for possible additional call-control information).

isdn protocol-emulate network is the configuration of the Layer2 and Layer3 of the ISDN protocol, the Voice Gateway is working as NT and the PBX is in the slave mode.

isdn send-alerting causes the Alerting message to be sent out before the Connect message.

isdn sending-complete is an optional enhancement, where the sending complete information element is required in the outgoing call setup message. The last command specifies the transfer capability for voice calls.

5.1.2.2.3 Dial-peer configuration
The next configuration step is setting up the call rules. This is done by a dial-peer command set from the basic config mode (router(config)#) of the Cisco gateway. If the gateway should provide calls from both sides (to and from the PSTN/PBX), a set of at least two dial-peers has to be configured.
dial-peer voice 1 pots
destination-pattern 42037763....
progress_ind alert enable 8
direct-inward-dial
port 0/0:15

These commands specify rules for calls to the PSTN(PBX) from the VoIP-side.
The called number prefix is 42037763 and must be followed with four digits of extension (four dots substitution pattern). The best match to destination pattern chooses the right dial peer.
progress_ind alert enable 8 is the transcription of the Progress element in the Alerting message. This transcription causes B-channels to interconnect and allows the resolving of a possible problem with the ring-back tone.

The rules are written into the port interface 0/0:15 with DDI (Direct Dialling In).

dial-peer voice 112 voip
destination-pattern 420........
session target ras
no vad

These commands specify rules for calls leading to the VoIP-side from the PSTN(PBX):
- The called number prefix is 420 and it must be followed with nine digits;
- The target of this session is the gatekeeper, accessible through RAS signalling;
- The last command specifies that the Voice Activity Detection is not possible (higher voice quality);
- The default configuration is VAD with CNG function (Comfort Noise Generation).

The user is reminded here that the listed configuration may not be sufficient to run a voice gateway on Cisco routers. Commands may depend on the type of the router and the IOS version used.

5.1.2.3 Gatewaying H.323 using a GNU Gatekeeper

How to set up services using GNU Gatekeeper was already described in Section 4.5.3. Here, enhanced configuration and operation for GnuGK to be used with a gateway in order to reach people who are using ordinary telephones is described.

The gatekeeper has to know which calls are supposed to be routed over the gateway and what numbers shall be called directly. Using the [RasSrv::GWPrefixes] section of the config file, the administrator tells the gatekeeper the prefix of numbers that will be routed over the gateway.

[RasSrv::GWPrefixes]
gw-PSTN=0
gw-MOBILE=3

These entries tell the gatekeeper to route all calls to E.164 numbers, starting with 0, to the gateway that has registered with the H.323 alias gw-PSTN, and all calls to the E.164 numbers,
starting with 3, to the gateway that has registered with the H.323 alias gw-MOBILE. If there is no registered gateway with these aliases, the call will fail. Note that you must use the gateway alias. You cannot just tell the gatekeeper the IP number of the gateway. Static configuration of gateway-ip-address/prefix is, in principle, possible using the [RasSrv::PermanentEndpoints] configuration section, but such a solution is not advised, because it leads to errors when a network reconfiguration is done.

When using a gateway, you often have to use different numbers internally and rewrite them before sending them over a gateway into the telephone network. You can use the RasSrv::RewriteE164 section to configure this.

[RasSrv::RewriteE164]
12345=08765

In this example, the gatekeeper is configured to replace the numbers 12345 at the beginning of the E.164 number dialled to 08765 (for example, 12345-99 is rewritten to 08765-99). Please refer to rewrite for the section syntax.

A gateway can register its prefixes with the gatekeeper by containing supportedPrefixes in the terminalType field of RRQ. The following option defines whether to accept the specified prefixes of a gateway.

AcceptGatewayPrefixes=1
#Default: 1

5.1.3. Gatewaying from SIP to PSTN/ISDN

- 5.1.3.1 Gatewaying SIP using Cisco

Configuration of a SIP gateway is almost same as the configuration of an H.323 Gateway and because configuration of an H.323 Gateway is already described in Section 5.1.2.2, the same settings are not described again here (for an interface configuration which is exactly the same). Only configuration specific to SIP is described. Readers should read Section 5.1.2.2 first.

Dial-peer configuration is almost same as described in Section 5.1.2.2. The only difference is that ras is replaced by sip-server. For example,

dial-peer voice 112 voip
 destination-pattern 420........
 session target sip-server
 no vad
5.1.3.2 sip-ua configuration

All the SIP parameters are configured in the **sip-ua** section. An example configuration might look like:

```
sip-ua
  nat symmetric role passive
  nat symmetric check-media-src
  retry invite 4
  retry response 3
  retry bye 2
  retry cancel 2
  sip-server dns:iptel.org
```

The first parameters configure the gateway to be passive. That is good for the **Connection Oriented Media**. Passive means that if there is a `direction=active` parameter in SDP, then the gateway will wait with the sending of media until it receives the first media packet from the remote party. This feature can be very useful for NAT traversal. It can be enabled only when the gateway is in the public Internet.

The second line configures the gateway to check for the source of incoming media and send its media there if it is in a symmetric mode. This option is related to the previous one. **Retry**. Parameters specify how many times various SIP messages should be retried.

The last parameter specifies how to reach the SIP Proxy. In this case, the gateway will send all the SIP traffic to `iptel.org` and it will use DNS to resolve it to IP.

5.1.4 Gatewaying from SIP to H.323 and vice versa

SIP to H.323 gatewaying and vice versa is a complex matter since, up to now, only basic translations of services are possible using this gatewaying. A great development effort in this topic is useless since the gateways make the users loose the native protocol, (H.323 / SIP) supplementary services. These types of gateways, even if valuable for connecting SIP and H.323 worlds, are not yet widely deployed because the adoption of proprietary protocols provides the users with more value-added services. For the sake of thoroughness, this section deals with operations, descriptions and simple configuration of SIP-H.323 Gateways.

A SIP/H.323 Gateway allows users to make an audio call from a SIP network to an H.323 network and vice-versa. The entities making the calls using such a gateway can be:

- a SIP user agent;
- an H.323 terminal;
- a SIP Proxy Server;
- an H.323 Gatekeeper;
- another gateway (e.g., SIP-PSTN).

Various types of operations can be performed using a SIP/H.323 Gateway and can be basically divided into five categories (detailed descriptions, follow this section):

- a user registration;
- a call from SIP to H.323;
There are different modes in which a SIP/H.323 Gateway can operate. In this section, basic operation modes are described. For more detailed operations, please refer to ‘Interworking Between SIP/SDP and H.323’ for examples of basic functionalities as well as configuration guidelines. Actual configurations are relative to specific hardware/software and are out of the scope of this document.

A SIP/H.323 Gateway may have a built-in H.323 Gatekeeper or a built-in SIP registrar (optional presence or activation of such entities are dependent on software implementation choices). Different operations are performed by the SIP/H.323 Gatekeeper depending on whether the internal gatekeeper/internal SIP register is activated or not.

If a SIP/H.323 Gateway is configured appropriately, it should try to register both with an H.323 Gatekeeper using RAS procedures and with a SIP registrar, in order to perform the gateway's address resolution from either side. A SIP entity can query the registrar, whereas an H.323 entity can query the H.323 Gatekeeper to locate the SIP/H.323 Gateway. If the internal gatekeeper is activated, then no registration to an external gatekeeper should be performed. If the internal SIP registrar is activated, then no registration to an external SIP registrar should be performed. At least one H.323 Gatekeeper and at least one SIP registrar should be always specified/activated for operations to be successful.

If an H.323 Gatekeeper is not specified, then a broadcast GRQ, Gatekeeper ReQuest, message should be sent to discover it. Once the H.323 Gatekeeper address is known, an RRQ, Registration ReQuest, message is used to register to it. The SIP/H.323 Gateway alias should be inserted in such a message. If no built-in SIP registrar is used, then an external SIP registrar address should always be specified (a SIP REGISTER message should always contain the destination address). The contact address inserted in the REGISTER message should be that of the SIP/H.323 Gateway itself.

5.1.4.1 User registration

In this section, details are given on different architectures for user registration/address resolution. User registration servers are SIP registrars and H.323 Gatekeepers. If a SIP/H.323 Gateway has direct access (either built-in or configured) to user registration servers, this simplifies locating users independently of the signalling protocol. The user registration server forwards the registration information from one network, to which it belongs, to the other.

Depending on the internal architecture of the SIP / H.323 Gateway, we can distinguish three different cases:

1. The SIP/H.323 Gateway contains a SIP Proxy and registrar (Figure 5.12). The H.323 Gatekeeper maintains the registration information and thus H.323 users register via the usual procedure. On the other hand, when a SIP REGISTER request is received by the SIP registrar server, it generates a registration request (RRQ) to the H.323 Gatekeeper. The RRQ contains the translation of a SIP URI into the H.323 Alias Address;
2. The SIP/H.323 Gateway contains an H.323 Gatekeeper (Figure 5.13). The user registration information from both networks is maintained by the SIP Proxy Server. The SIP registrar receives the forwarding of any H.323 registration request received by the H.323 Gatekeeper. The SIP server stores the user registration information of both the SIP and H.323 entities.

3. The SIP/H.323 Gateway is independent of a proxy or a gatekeeper (Figure 5.14). User registration is done independently in the SIP and H.323 networks.
\section*{5.1.4.2 Call from SIP to H.323}

The SIP/H.323 Gateway operations are described only when it acts as an active intervention. Since, when the SIP/H.323 Gateway contains a SIP Proxy and registrar, the SIP registration information is also available through the H.323 Gatekeeper and any H.323 entity can resolve the address of SIP entities reachable via the SIP server. Thus, an active intervention is performed only in the case of calls originating from the SIP domain towards the H.323 one.

In such a case, if a SIP user agent wants to talk to another user located in the H.323 network, it sends a \texttt{SIP INVITE} message to the SIP server, which, in turn, forwards an H.323 location request (LRQ) to the configured gatekeeper. If no gatekeeper was configured, then a broadcast LRQ is sent. The gatekeeper responds with the IP address of the H.323 user, making the SIP server able to route the call to the destination. Drawbacks of this approach are that the H.323 Gatekeeper may be highly loaded because of all the registrations in the SIP network.

Of course, when the SIP/H.323 Gateway is independent of proxy or gatekeeper, it must query the other network for user location, acting an active intervention in the call.

\section*{5.1.4.3 Call from H.323 to SIP}

Similar to the previous case, calls from the H.323 domain to the SIP one only require an active intervention of the SIP/H.323 Gateway when the originating domain contains an H.323 Gatekeeper. Such a consideration applies since H.323 terminals appear to the SIP user agents as SIP URLs within the same domain (for further information on how H.323 addresses are translated to SIP URLs, please refer to ‘Inter-working between SIP/SDP and H.323’).

In this case, if an H.323 user wants to talk to a user located in the SIP network, it sends an admission request (ARQ) to its gatekeeper. The gatekeeper has to send the location request (LRQ) to all the gatekeepers it has configured as neighbours. If the SIP/H.323 built-in gatekeeper receives the LRQ, it tries to resolve the address of a SIP user. This address resolving is done by sending a \texttt{SIP OPTIONS} request. If this operation succeeds and the user is currently available to be called, the SIP/H.323 Gateway replies to the H.323 network gatekeeper with the location confirmation (LCF), after the H.323 terminal knows that the destination is reachable. Drawbacks of this approach are, as in the previous case, that the SIP Proxy has to store all H.323 registration information.

Of course, when the SIP/H.323 Gateway is independent of proxy or gatekeeper, it must query the other network for user location, making an active intervention in the call.

\section*{5.1.4.4 Media switching and capability negotiation}

A SIP/H.323 Gateway should be configured in order to have media transport directly connected between the SIP and the H.323 entities. When, in some cases, this is not possible, the SIP/H.323 Gateway should have a built-in media switching fabric activated to forward RTP and RTCP packets from one client to the other. A great inter-working effort is carried out in
While SIP offers media with the **INVITE** message, the normal H.323 mode is to open a separate H.245 channel. In this case, the SIP/H.323 Gateway has to start a muted SIP call, and re-negotiate the capabilities later, unless the H.323 client supports the use of the FastStart procedure. If both of these conditions can not be ensured, the gateway must use the default codecs for both sides and, eventually, perform media transcoding.

5.1.4.5 Call termination

Since a call can be terminated from both H.323 and SIP clients, appropriate message translation/forwarding is required from the SIP/H.323 Gateway: a SIP **BYE** message is mapped to an H.323 **Release Complete** message and vice-versa.

5.1.4.6 Configuration guidelines

In this section, basic configuration principles are given, abstracting them from specific software in order to give general guidelines and give information rapidly becoming out-of-date. Apart from low-impact configuration information (log files location, log level setting), in order to configure a SIP/H.323 Gateway, it is likely that there will be a need to configure:

- enabling/not enabling of built-in SIP Proxy/registrar and related configuration. Please refer to the section on setting up SIP services for information on how to configure a SIP Proxy/registrar server;
- the remote address/port of the H.323 network gatekeeper (either if SIP built-in proxy/registrar is enabled and no broadcast requests have to be sent, or if the SIP/H.323 Gateway is independent of proxy or gatekeeper);
- enabling/not enabling of a built-in H.323 Gatekeeper and related configuration. Please refer to section on setting up H.323 services for information on how to configure an H.323 Gatekeeper;
- the remote address/port of the SIP network proxy/registrar (either if H.323 built-in gatekeeper is enabled, or if the SIP/H.323 Gateway is independent of proxy or gatekeeper).

5.1.5 Accounting Gateways

Accounting may be performed both on gatekeepers and on gateways. Even if, in principle, accounting done on gateways is possible, the best solution is to centralise the accounting on gatekeepers, which are able to maintain all the call information (if configured in call signalling routed mode). Information on how to perform accounting may be found in Section 4.3.

5.2 Supplementary services

This section deals with supplementary services both using H.323 and using SIP. These supplementary services are intended to be used in addition to the basic ones, but still in a telephony-like environment. The supplementary services are protocol-specific and are intended to
replicate all the wide range of services we are already used to in the PSTN networks. Section 5.2.1 will deal with the supplementary services using the H.323 protocol, while Section 5.2.2 will deal with supplementary services using the SIP protocol.

5.2.1 Supplementary services using H.323

This section describes the supplementary services of the H.323 protocol as specified in the H.450.x supplementary services recommendations.

The supplementary services of H.323 are defined in the H.450 series, which establishes the signalling between endpoints necessary to implement the telephone-like services. Although some of these services have the same functionalities as the equivalent ones developed for the circuit-switched networks, it is relevant to note that the paradigm of H.323 is completely different.

The peculiar characteristic of the supplementary services of H.323 is that the protocol actions needed for their control are performed using peer-to-peer signalling. In other words, the protocols are designed in such a manner that functional entities communicate with their peer entities (clients, gatekeepers, gateways etc.) directly without requiring network intervention.

The services are distributed in the endpoints, based on the suitability of the service at that endpoint. For example, an H.323 client maintaining the state of the calls is suitable for the implementation of services such as call transfer, call forwarding, call waiting, and so on. Since a peer-to-peer model is used by the supplementary services of H.323, the payload and the signalling of the services are transparently sent through the network without requiring the processing of any network element.

Considering also that the state of the calls is distributed to the endpoints involved in the calls, it can be deduced that services for H.323 can be deployed by any manufacturer and sold directly to the end-user for deployment. This feature of the service deployment leads to a low cost entry for the service provider and a service cost for customer characterised by an initial cost for the software implementing the service for unlimited use. This last aspect implies that new services can be distributed to VoIP users in the same way as any other software is sold in the market today.

This scenario raises problems related to the subscription-control of these supplementary services. To this aim, the signalling necessary for these services should be routed through the gatekeeper (or other proxy elements) containing a service database description that permits charging for the use of supplementary services or their blocking when they are not subscribed to by the customer.

Another issue related to the peer-to-peer approach used in the H.323 supplementary services is service incompatibility. In H.323, the clients exchange their capabilities and hence, they are only able to use those services that are common to both clients. Therefore, services that are present in one client are simply not used if they are not present in the other client involved in the call.

In the case of hybrid networks, e.g., PSTN and H.323, the supplementary service functionality and availability on the calls between legacy and H.323 networks depend on the capabilities of the gateway, which must perform the signalling translation necessary to guarantee the services. Moreover, the gateway can be used by the provider to charge for the service.
Supplementary services in H.323 are specified in a multi-tier approach. Basic services consist of building blocks or primitives from which more complex services can be developed. Compound services are developed from two or more basic services. For example, in a consultation transfer service, the user needs to put a multimedia call on hold and retrieve it later, to call another person and possibly alternate between the two calls, and to transfer the two calls together. Hence, this service is simply obtained combining basic supplementary services. The basic supplementary services defined in the H.450 series are described in the following:

- **H.450.2 - Call Transfer.** It enables a user A to transform an existing call (user A - user B) into a new call between user B and a user C selected by user A;

- **H.450.3 - Call Diversion.** It is also known as call forwarding and comprises the services: call forwarding unconditional, call forwarding busy, call forwarding no reply and call deflection. It applies during call establishment by providing a diversion of an incoming call to another destination alias address. Any of the above variants of call forwarding may operate on all calls, or selectively on calls fulfilling specific conditions programmed or manually selected by the user;

- **H.450.4 - Call Hold.** It allows the served user (holding user), which may be the originally calling or the called user, to interrupt communications on an existing call and then subsequently, if desired, re-establish (i.e., retrieve) communications with the held user. During the call interruption, the holding user provides some form of media for the held user, and may perform other actions while the held user is being held, e.g., consulting another user;

- **H.450.5 - Call Park and Pickup.** This is a service that enables the parking user A to place an existing call with user B to a parking position and to later pick up the call from the same or other terminal;

- **H.450.6 - Call Waiting.** It permits a served user while being busy with one or more calls to be informed of an incoming call from a new user by an indication. The served user then has the choice of accepting, rejecting or ignoring the waiting call. The user calling the busy party is informed that the call is a waiting call at the called destination;

- **H.450.7 - Message Waiting Indication.** It provides general-purpose notifications of waiting messages, including the number, type and subject of the messages;

- **H.450.8 - Name Indication.** This service permits to a user A to be informed of an incoming or existing call or of the alerting state by a user B. The notification can be provided from a server or directly from user B;

- **H.450.9 - Call Completion.** It enables a calling user A to have the call toward a user B completed without having to make a new call attempt, when the first call procedure has been not completed since user B was busy or, though alerted, did not answer;

- **H.450.10 - Call Offer.** It permits to a calling user A, encountering a busy destination user B, to 'camp-on' to the busy user. This means that the call is indicated to user B and kept in a waiting state until user B reacts to the indication, rather than being released due to the busy condition;

- **H.450.11 - Call Intrusion.** It enables a calling user A, encountering a busy destination user B, to establish communication with user B by breaking into an established call between user B and a third user C;

- **H.450.12 - Common Information Additional Network Feature (ANF-CMN).** This is an additional network feature that enables the exchange of Common Information between ANF-CMN endpoints. This Common Information is a collection of miscellaneous information that relates to the endpoint or equipment at one end of a connection and includes one or more of the following: Feature Identifiers, Feature Values, or Feature Controls. This information, when received by an ANF-CMN endpoint, can be used for any purpose, e.g., as the basis for indications to the local user or to another network or in order to filter feature requests.
The following examples can be useful to understand how the supplementary services can be implemented. In the example, attention will be focused mainly on the signalling procedure, considering that the peer-to-peer approach adopted by the H.323 supplementary services concentrates the problems related to the service implementation to the endpoint or gatekeeper used as service server.

/- 5.2.1.1 Call transfer supplementary service

Supplementary Service Call Transfer (SS-CT) is a supplementary service which enables the served user (user A or transferring user) to transform an existing call with user B (primary call) into a new call between user B and a user C (transferred-to user) selected by user A.

It is relevant to note that the primary call between user A and user B must be answered before transfer can be initiated. On successful completion of SS-CT, user B and user C can communicate with each other and user A will no longer be able to communicate with user B or user C.

The signalling necessary to use the service is implemented using a set of messages forming the Application Protocol Data Unit (APDU), which are transported within user-to-user information elements in call control and FACILITY messages as defined in the ITU-T Recommendation H.450.1.

As an example, Figure 5.15 reports the signalling messages exchanged to perform the Call Transfer from the primary call between user A and user B to the new call involving user B and user C. In particular, when it decides to perform the Call Transfer, user A sends to user B the FACILITY message with the APDU denoted as CallTransferInitiate.Invoke, containing the address of the user C. Using this information, user B initiates the procedure to open the new call with user C transmitting the SETUP message with the CallTransferSetup.Invoke APDU. The user C accepts the call, sending the CONNECT message with the appropriate APDU. When user B receives the CONNECT message, it tears down the primary call with user A, transmitting the RELEASE COMPLETE message with the appropriate APDU.

![Figure 5.15 Messages exchanged to implement the CT-SS without gatekeeper](image)

The example refers to the case where the gatekeeper is absent or the direct signalling model is adopted. In this case, only the software able to process and to generate the APDUs is necessary to implement the service. An example is given in Figure 5.16 where we report an Ohphone (anopenh323 application) interface modified with, the addition, of a Call Transfer Supplementary
services button. In this case, simply pressing the **Transfer** button makes the application of an open dialogue screen, allowing the insertion of the H.323 ID of the called party and generating the necessary APDUs.

![Figure 5.16 An example of Call Transfer Supplementary Service without gatekeeper - Ohphone-modified interface](image)

5.2.1.1.1 Gatekeeper role in the call transfer

In the case of the gatekeeper-routed model, the gatekeeper either transparently transports or performs the operations necessary to offer the service. In particular, the gatekeeper can provide CT-SS, when one or both endpoints are unable to support the service.

Hence, in order to provide the service, the gatekeeper can decide to perform the actions applicable to the transferred endpoint, to the transferred-to endpoint or both. When the gatekeeper handles the **Call Transfer** signalling on behalf of an endpoint, it should perform further procedures as defined for the transferred and the transferred-to endpoints.

These further procedures are the sending of a **FACILITY** message with an appropriate APDU used to inform the transferred user (or the transferred-to user when it manages the signalling on behalf of transferred-to user) that it has been transferred. Furthermore, the gatekeeper should instruct the endpoint (or endpoints), that it manages the signalling on behalf of the new set of media channels to connect.

To accomplish this, the gatekeeper uses the H.323 procedures for third party re-routing. These procedures require the gatekeeper to send an empty terminal capability set (one which indicates that the remote entity has no receive capabilities) to endpoints A and B, causing A and B to close their logical channels. Then, the gatekeeper exchanges the H.245 command **end session** with endpoint A and sends a **RELEASE COMPLETE** message containing the resulting APDU to release the call signalling channel.

When it receives a non–empty terminal capability set from endpoint C, the gatekeeper forwards the capability set to endpoint B to cause it to reset its H.245 associated state to that which it is in when H.245 has just completed (the first) terminal capability set exchange in the initial call establishment sequence. Then the gatekeeper takes part in master/slave determination, and opens appropriate logical channels with endpoint C.
To better understand the signalling procedure used, Figure 5.17 illustrates the messages exchanged for the CT-SS when the gatekeeper manages the signalling on behalf of the transferred user, i.e., B user.

Figure 5.17 Messages exchange for gatekeeper-managed CT-SS

After the reception and the processing of the **FACILITY** message, indicating that user A wants to transfer the current call, the gatekeeper sends a **SETUP** message with a `callTransferSetup.invoke` APDU to the transferred-to endpoint C. Then, the reception of the **ALERTING** or **CONNECT** message with the appropriate APDU transmitted by the user C enables the gatekeeper to send a **FACILITY** message with the APDU informing the endpoint B that it has been transferred (joining).

To instruct the endpoint for the new set of media channels, the gatekeeper sends an empty terminal capability set (it is defined as a **terminalCapabilitySet** message that contains only a sequence number and a protocol identifier) to endpoints A and B, causing A and B to close their logical channels, and to endpoint C, causing this endpoint to enter in the **transmitter side paused** state.

While in this state, an endpoint does not initiate the opening of any logical channels, but accepts the opening and closing of logical channels from the remote end, based on the usual rules, and continues to receive media on open logical channels opened by the remote endpoint. This procedure allows gatekeepers to re-route connections from endpoints that do not support supplementary services, and endpoints to receive announcements (e.g., pre-connect call progress) where the announcing entity does not wish to receive media from the endpoint.

The **transmitter side paused** state is left by the endpoint on reception of any **terminalCapabilitySet** message, other than an empty capability set. On leaving this state, an endpoint resets its H.245 state to that which it was in just after the H.245 transport connection was made at call establishment time (i.e., the beginning of phase B), but it preserves state information relating to any logical channels that are open.
This puts the endpoint in a known H.245 state after the pause, allowing an endpoint to be connected to a different endpoint when it is released from the paused state. After leaving the transmitter side paused state, an endpoint proceeds with normal H.245 procedures: it takes part in master/slave determination signalling and proceeds with normal open logical channel signalling procedures.

After these procedures, necessary to set the new call between B and C, the gatekeeper sends a RELEASE COMPLETE message containing callTransferInitiate return result APDU to release the call signalling channel of the primary calls, i.e., between A and B.

5.2.1.2 Call Diversion Supplementary Service

The signalling procedures and the protocols needed to implement the Call Diversion Supplementary Service are defined in the Recommendation H.450.3. The service permits to a user, denoted as the served user and receiving a call from an originating user to redirect it to another user, denoted as the diverted-to user. This operation leads to the connection of the originating user with the diverted-to user, and it is possible only when the served and originating users are not in a call. There are four kinds of call diversion service. Supplementary Service Call Forwarding Unconditional (SS-CFU) permits a served user, independent of its status, to forward incoming calls addressed to the served user's number to another number. CFU is provided on a per number basis. On the contrary, in the case of the Supplementary Service Call Forwarding Busy (SS-CFB), the call forwarding is made by the served user only when it is busy. A bit different is the Supplementary Service Call Forwarding No Reply (SS-CFNR), where the call forwarding begins when the served user does not establish the connection within a defined period of time.

All of these kinds of services may be either permanently activated or activated/deactivated under user control. The user control can be provided locally, at the served endpoint, remotely by another endpoint or both. Other than the activation/deactivation procedures, the H.450.3 defines the interrogation and the registration procedures.

The interrogation procedure provides information to the interrogating endpoints such as the activated or deactivated state of the supplementary service, and, if the service is activated, the diverted-to number, whether activated for all basic services or an individual basic service and the identity of the individual basic service. The registration permits the provision of the information related to the activated service, and it is performed on the activation procedure.

Indeed, to activate these services, the served user supplies the diverted-to number and optionally, further parameters, depending on the capabilities of the specific implementation. Verification that the diverted-to number exists may be carried out before accepting the activation request.

In the same recommendation, Call Deflection (SS-CD) is also defined, which permits a served user to respond to an incoming call offered by the served endpoint by requesting diversion of that call to another number specified in the response. Hence, the service does not require activation/deactivation/information/registration procedures. The diversion request is only allowed before the called user has answered the call and, in particular, when the served user is in the alerting state.
On acceptance of the CD request, the served endpoint performs the diversion towards the indicated diverted-to number. The original call at the served user remains in the alerting state and the served user is still able to accept the call until the diverted-to endpoint enters an alerting state. When the diverted-to endpoint enters the alerting state, the call to the served user is cleared.

5.2.1.2.1 Gatekeeper role in the call diversion
The gatekeeper can be either transparent to the Call Diversion Service or directly manage it. In the first case, the implementation of the service is directly on the user endpoint or in the proxy server.

When the service is managed by the gatekeeper, the messages related to the activation/deactivation/interrogation/verification of the diverted-to number are received and processed by it, acting as a served endpoint. Thus, when the originating user sends the ARQ message to contact the forwarding terminal for sending the activation/deactivation/interrogation/verification messages, the gatekeeper responds returning the ACF message containing its own call signalling address, rather than the call signalling address of the forwarding terminal.

The invocation of the service depends on the kind of call diversion invoked. In particular, when the SS-CFU is activated in the gatekeeper for an incoming call destined for user B (being the served user), the gatekeeper acts as served endpoint and invokes the call forwarding unconditional for this call. Furthermore, if the option served user notification applies, the gatekeeper sends the notification to the called terminal.

In the case of the SS-CFB, the gatekeeper continues the H.225 call establishment procedure to endpoint B, where the user B (being the served user) is. If the endpoint B results busy, i.e., if a RELEASE COMPLETE message is received from endpoint B containing cause value user busy, the gatekeeper acts as served endpoint and invokes the call forwarding on busy for this call. Also in this case, the gatekeeper sends the notification to the called terminal, if the option served user notification applies.

For the provision of the SS-CFNR service by the gatekeeper, when a call arrives, destined for user B (being the served user), the gatekeeper starts a local no-response timer and continues the H.225 call establishment procedure to endpoint B. If the local no-response timer expires during the alerting phase of the call, the gatekeeper acts as served endpoint, invokes the call forwarding on no reply for this call and, if the option served user notification applies, sends the notification to the called terminal.

5.2.1.3 Call Waiting Supplementary Service

The Supplementary Service Call Waiting (SS-CW), defined in the H.450.6 Recommendation, permits a busy user B to be informed of an incoming call while being engaged with one or more other calls.

In other words, SS-CW operates in case of an incoming call (from user C, calling user) when a busy condition within the endpoint is encountered. Note that, in general, a busy condition may also be encountered if the user is busy with workflow applications (e.g., writing e-mails).
When the SS-CW is invoked, user B is given an appropriate indication of the waiting call and the calling user C may be informed about SS-CW being invoked at the destination by being provided with an appropriate indication. After receiving the call waiting indication, user B has the choice of accepting, rejecting or ignoring the waiting call. During the call waiting condition, the calling user C has the option to release the call or to invoke other supplementary services, e.g., message waiting callback.

In the case of endpoints able to simultaneously manage different calls, the SS-CW is invoked only when an attempt for a new call (i.e. the H.225.0 SETUP message from user C arrives to endpoint B) is made to exceed the maximum number of calls the endpoint B can simultaneously hold. This condition leads the served endpoint B to return an ALERTING message towards the calling user C containing the appropriate APDU.

Meanwhile, the endpoint B locally provides a call waiting indication to the user B. The busy User B can free resources to accept a waiting call by:
- releasing an existing call according to the procedures of recommendation H.225.0;
- using the Call Hold Supplementary Service on an existing call according to the procedures of Recommendation H.450.4;
- using the Call Park Supplementary Service on the existing call according to the procedures of Recommendation H.450.5.

If the served user B accepts the waiting call, the served endpoint sends the CONNECT message to the calling user and proceeds with normal call establishment procedures.

After the reception of the ALERTING message containing the APDU indicating the invocation of the SS-CW by the endpoint B, the calling endpoint provides a call waiting indication to the calling user, which has the following options:
- wait until the waiting call gets accepted (connected) by the served user B;
- release the call;
- invoke other supplementary services, e.g. message waiting callback;
- perform other actions (e.g. sending e-mail).

5.2.1.3.1 Gatekeeper role in the Call Waiting Service
In the case of the gatekeeper-routed model, the gatekeeper passes on SS-CW operations transparently. When a gatekeeper has appropriate knowledge about the served endpoint B status, it may act on behalf of the served endpoint by means of inserting the APDU indicating the invocation of the CW-SS into an ALERTING message received from endpoint B before sending on the ALERTING message towards the calling endpoint.

5.2.1.4 Supplementary services (H.450) support in popular gatekeepers
The Cisco MCM Gatekeeper does not support any H.450 features, even though it is, itself, capable of H.323 proxying. However, Cisco gateways do support an extensive range of H.450 features and can play a significant role in supporting supplementary services for H.450-capable endpoints that would like to reach the PSTN.
The RADVISION ECS Gatekeeper, being based on a H.323 v.4 protocol stack, implements a number of the H.450 features. On the ECS configuration interface, check the Settings tab, under the category 'Supplementary Services', where you can enable the following:

- Unconditional forward (H.450.3): endpoints may select to redirect calls to other endpoints in all cases;
- Forward on busy (H.450.3): endpoints may select to redirect calls to other endpoints when they are themselves busy;
- Forward on no response (H.450.3): endpoints may select to redirect calls to other endpoints when they could not respond to a call after x minutes.

After enabling the above services, the gatekeeper administrator can define forwarding rules by utilising the Forwarding tab. Rules for specific endpoints (Standard), as well as mass-application (Wildcard) rules for whole prefixes can be applied for all three forwarding conditions: unconditional, on busy, on no answer.

For all supplementary services to function, the administrator must enable full routing mode (Settings tab, category Calls). Make note that the ECS administrator can also initiate calls between endpoints, by using the Call Control tab, and the Make Call button.

The GNU Gatekeeper does not support any H.450 features either. However, some dynamic routing functionality can be implemented by utilising the 'virtual queues' or 'CTI agents' feature of the GNU Gatekeeper, which allows the operation of a simple model of aliasing a name and the forwarding of calls to a dynamic queue of ‘agent’ endpoints.

- 5.2.2 Supplementary services using SIP

This section demonstrates the use of legacy telephony features in SIP. Note that the general SIP design concept has been to leave the description of such features out of protocol specifications. It is the responsibility of implementations to introduce new services on top of well-defined protocol specification. There are only a few well-defined protocol elements such as REFER method (RFC 3515). Such elements can be used for a variety of services without having to undergo the burdensome standardisation process again and again. With the particular REFER example, the REFER method may be used for several variations of call transfer, the click-to-dial application as described in the next section, interaction with conference bridges, etc. The application logic may be completely hidden in a SIP element, or it can use some established service-building mechanisms such as Call Processing Language or SIP-CGI (RFC 3050).

To show the proper use of protocol elements for building frequently-used services, the IETF issued an informational document, ‘Session Initiation Protocol Service Examples’. The document presents call flows for many services, including on-hold, transfers and conferencing. Another essential document is ‘A Call Control and Multi-party Usage Framework for the Session Initiation Protocol (SIP)’ by Rohan Mahy et al. The document shows the concepts of building more complex services based on SIP and also presents multiple design choices for many of them. Yet another document related to implementation of telephony services is ‘Third-party Call Control’, which shows how to implement complex multi-stage multi-party telephony conversations using external SIP-based call control.
The rest of this section demonstrates the most frequently used SIP services, gives a brief overview on provisioning of such services and also describes what the signalling looks like.

5.2.2.1 On-hold

With SIP, on-hold is implemented as a peer-to-peer feature. A phone putting the other telephone on hold does so by sending a specially-formed re-INVITE request. In response to such a request, the other phone stops sending media to save bandwidth and it indicates to the user that he is on hold. (It may be silent, display the status using user interface, play local music, etc.) There are subtle differences in how on-hold is signalled in earlier and current SIP versions. RFC 2543 used a dummy IP address 0.0.0.0 to indicate an on-hold condition whereas RFC 3261 uses SDP send only attribute. Call-flow on Figure 5.18 presents on-hold signalling implemented according to RFC 2543. The key message is re-INVITE, number 3, which puts the other party on hold. The SDP payload of numbered SIP messages is shown in detail (SIP headers have been removed because they are not important in this case).

![On-hold call flow](image)

The following message is regular INVITE establishing a call

1. INVITE

[SIP headers not shown]

```
v=0
o=Cisco-SIPUA 997 27044 IN IP4 192.168.2.32
s=SIP Call
c=IN IP4 192.168.2.32
```
2. 200 OK

[SIP header not shown]

v=0
o=Cisco-SIP-UA 4919 16082 IN IP4 192.168.2.32
s=SIP Call
c=IN IP4 0.0.0.0
t=0 0
m=audio 21112 RTP/AVP 0 8 18 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

The following message puts the remote party on hold. Note the 0.0.0.0 on the line beginning with c=.

3. re-INVITE

[SIP headers not shown]

v=0
o=Cisco-SIP-UA 4919 16082 IN IP4 192.168.2.32
s=SIP Call
c=IN IP4 0.0.0.0
t=0 0
m=audio 21112 RTP/AVP 0 8 18 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

The following message confirms the on hold state. There is nothing special in the SDP

4. 200 OK

[SIP headers not shown]

v=0
o=Cisco-SIP-UA 4919 16082 IN IP4 192.168.2.32
s=SIP Call
c=IN IP4 0.0.0.0
t=0 0
m=audio 21112 RTP/AVP 0 8 18 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
5.2.2.2 Call transfer

The call transfer is one of the most frequently used telephony services. The protocol element used in SIP to implement call transfer is the **REFER** method. The **REFER** method is a very powerful mechanism, which allows anybody to ask a SIP device to initiate a call to a specific destination. Call transfer is only one application which relies on **REFER - click to dial** and conference management can utilise **REFER** as well.

Even call transfer may be implemented in a variety of ways in SIP telephones. **Unattended transfer** (also called **Blind Transfer**) transfers a call participant to another party, whereas the transfer originator drops the initial conversation. In **Attended transfer** (also called **Transfer with consultation**), the transferring agent first initiates a short conversation with the transfer target before connecting it to the transferred party.

Other variations may include a short introductory conference during the call transfer or keeping the original conversation active until the transfer succeeds. (the **NOTIFY** request is used to report on success of call transfer in SIP.)

The following call flow demonstrates the use of **REFER** for unattended call transfer. The key requests are **REFER** by which the called party suggests that the calling party establish a conversation with the transfer target. The calling party does so by sending the **INVITE**. The called party exits the original conversation by sending **BYE** without awaiting the completion of the call transfer.

The following **REFER** message (red in the call flow) asks the calling party to establish a call to the transfer agent. Note that the message contains the **Refer-To** header field containing SIP URI of the transfer agent and **Referred-By** header field which contains the SIP URI of the initiator (the called party).

```plaintext
REFER sip:195.37.77.101:5060;lr SIP/2.0
Via: SIP/2.0/UDP 192.168.2.32:5060
From: <sip:callee@iptel.org>;tag=00036bb90fd300
To: <sip:caller@iptel.org>;tag=992d8f53-ca7e
Call-ID: 90bdee69-eb4f@192.168.0.130
CSeq: 103 REFER
Contact: sip:callee@192.168.2.32:5060
Route: <sip:caller@193.175.135.38:40012>
Content-Length: 0
Refer-To: sip:transfer_agent@195.37.77.101
Referred-By: <sip:callee@iptel.org>
```
The following INVITE message establishes a call from the calling party to the transfer agent. Note that the value from the Refer-To header field of the REFER message has been put into the Request-URI and To header field.

INVITE sip:transfer_agent@195.37.77.101 SIP/2.0
Via: SIP/2.0/UDP 192.168.0.130
From: <sip:caller@iptel.org>;tag=32e189db-ec7e
The following **BYE** message (green in the call flow) terminates the call between calling party and called party.

```
BYE sip:195.37.77.101:5060;lr SIP/2.0
Via: SIP/2.0/UDP 192.168.2.32:5060
From: <sip:callee@iptel.org>;tag=00036bb90fd3000
To: <sip:caller@iptel.org>;tag=992d8f53-ca7e-c73f
Call-ID: 90bdee69-eb4f-3e1c-9833-499857a5b2b2@192.168.0.130
CSeq: 104 BYE
Content-Length: 0
Route: <sip:caller@193.175.135.38:40012>
```

- **5.2.2.3 Unconditional call forwarding**

A user's ability to determine call processing is a great strength of IP Telephony. With SIP in particular, users are able to associate any number of devices with their address of record. SIP telephones register their whereabouts automatically using the **SIP REGISTER** request. Users may also introduce additional contacts by means of provisioning. Upon receipt of an incoming call request (**INVITE method**), a proxy server forwards the request to all registered contacts. Eventually, all registered phones start ringing in parallel and the conversation begins with the device which the user picks up.

The ability to manipulate contacts allows users to determine handling of incoming calls. For example, a user may wish to decide that all incoming calls will ring his cell phone as well. The following set of examples shows how the manipulation of registered user contacts can be used for forwarding purposes. The examples use SER and its command line control tool, **lserctl**, to manipulate contacts of a user. Typically, this job is done through a Web interface such as Serweb because it is more convenient. The commands used are **ul add USER SIP_CONTACT** for introducing a new forwarding address and **ul show USER** for displaying currently registered contacts.
First, the current status of registered contacts is inspected. The command reveals that a SIP phone registered a contact from IP address 212.202.42.68.

```
jiri@fox:~$ serctl ul show jiri
<sip:212.202.42.68:55723>;q=0.00;expires=272
```

To enable forwarding of incoming calls also to cell phone, introduce contact to the PSTN gateway. If a call arrives, the proxy server will ring both the previously-registered SIP phone and the manually-provisioned cell phone contact.

```
jiri@fox:~$ serctl ul add jiri sip:123456@iptel.org
sip:123456@iptel.org
200 Added to table
{'jiri','sip:123456@iptel.org'} to 'location'
jiri@fox:~$ serctl ul show jiri
<sip:123456@iptel.org>;q=1.00;expires=1073741820
<sip:212.202.42.68:55723>;q=0.00;expires=21
```

5.2.2.4 Conditional forwarding

Called parties frequently wish to redirect incoming calls to an alternative destination if the primary destination fails to answer. The reasons for failure are multi-fold. They may include a busy called party, disconnected called party's phone, user who currently does not answer or user denying the incoming call. The alternative destination is typically a voicemail system but it may be also another human or some other SIP device.

The following configuration fragment demonstrates how set up such a feature using SER:

```bash
# if invitation recipient off-line, forward to voicemail
if (!lookup("location")) {
    rewritehostport("voicemail.iptel.org");
    t_relay_to_udp("voicemail.iptel.org", "5060");
    break;
};
# user on-line, forward INVITE to him; also set up a failure
# handler so that we can redirect to voicemail if the
# call is not established successfully
if (method=="INVITE") {
    t_on_failure("1");
};
t_relay();
```

```bash
# alas, the call was not established successfully; well,
# let's retry with voicemail then
failure_route[1] {
    revert_uri(); # resend to voicemail with original request URI
```

P.170
Whereas this example demonstrates a global site policy which is applied to each user, some subscribers may wish to formulate their specific call processing preferences. How the preferences are formulated and provisioned in the SIP server is not necessarily governed by standards. SIP servers may have their own proprietary user-provisioning interfaces, typically with a Web front-end. On the other hand, a standardised way of call handling allows easier service portability. The IETF standard for describing called party's preferences is called Call Processing Language, CPL. In short, it is a simple XML-based language that allows subscribers to determine how the server handles calls for them. It is a special-purpose language that supports the specification of most common types of call processing. CPL does not allow script writers to affect the behaviour of the server in a way which could compromise the security of the server.

Whereas it is simple enough, most users will not be willing to write SER scripts. It is envisioned that CPL scripts will be generated and edited by applications with a convenient user interface. The following picture shows a screen snapshot of iptel.org's CPL editor.

![Figure 5.20 CPL editor](image)

5.3 Multipoint conferencing

Multi-party conversations are known from the PSTN world. The function is often provided by a company's PBX. It is also possible to use a commercial service. A central part of the service is the Multipoint Conference Unit (MCU). In order to use the service, a session leader must make a reservation for the session at the MCU. Every MCU has a different interface to do so. MCUs in the IP Telephony world usually offer a Web-based form for this.

At the time the conference is planned, each user calls the phone number of the MCU. After that, a number must be dialled to denote the session that the user wants to join, because an MCU can support multiple sessions at the same time. A password is required to prevent uninvited parties from joining the conference. Some MCUs can initiate the set up of the conference itself by dialling all the parties. It needs to know everyone's phone number in advance, of course.
The main function of the MCU starts at this point in the conference: it receives the audio signals of every party in the session, mixes the sources and copies the result to everyone except for the source party. This happens in real time, so everyone will hear everyone. This way of conversing has its specific ways of interaction between the parties. If a party wants to speak, it should be clear that the previous party has ended his part of the conversation. When collisions occur, it is useful if the session leader gives the word to one of those who wish to speak. These aspects have been investigated in the social-cultural area, but are not part of this cookbook.

Now that the functionality is known in general, more details on the case of IP Telephony MCUs can be given. An MCU can be obtained either in hardware or in software. Many gatekeepers are equipped with built-in MCU software functionality. In case of a hardware MCU, the main interface is, of course, an Ethernet connection. From a functional point of view, users cannot approach the MCU directly over IP. No matter whether H.323 or SIP are used for setting up regular two-party calls, a user can only dial in to the MCU through a gatekeeper or SIP Proxy. Parties that use a PSTN phone can also join a conference by means of the IP-to-PSTN gateway.

Modern MCUs can support both audio and video. The calling parties must support the audio and video codec that the MCU has on board. Some MCUs have the possibility to transcode between codecs, enabling users with different codecs to join the same conference. If video is also distributed by an MCU, the video streams cannot be mixed. One way this distribution mechanism is implemented is that only the video signal of the source with the loudest audio signal is transmitted to all users at that point of time (this in audio switching mode). There are other options, such as chair-controlled, in which the chair can lock the video (and possibly audio too) on one participant, or presentation mode. One participant is chosen and both audio and video are locked on the presenter; the rest of the audience can only listen. Some MCUs offer a Continuous Presence mode, in which the video signals is displayed in a matrix that shows all users to every user.

Modern MCUs support other layouts as well. An alternative to using an MCU in the IP world is to use IP Multicast. In this case, all parties transmit their audio (and video) over a Multicast channel. All users must tune in to the channels of everyone else. This means that the total amount data traffic increases with every user that joins the conference. Unfortunately, few networks support Multicast.