Building a LAN to Support Multiple Lightpath Projects

Ronald van der Pol

<rvdp@sara.nl>
About SARA

- Computing and Networking services
- Houses and operates national supercomputer Huygens
- Houses and operates national cluster Lisa
- LightHouse (joint lab of SARA, UvA and SURFnet for optical networking experiments and demos)
- SURFnet's subcontractor for SURFnet6 NOC
- SURFnet's subcontractor for NetherLight NOC
- One of the co-location sites of the AMS-IX
- CERN LHC Tier-1 site
- LOFAR Tier-1 site
LHC OPN Tier-1 Site

LHCOPN – current status
LOFAR Tier-1 Site

- LOw Frequency ARray
- Radiotelescope
- Consists of Sensor Fields
- Data Storage @ SARA
IMAU Climate Model

- Rendering at SARA
- Visualization at IMAU
- Connected with a SURFnet6 1G lightpath
Traditional ISP Connection

SURFnet

Layer 3 IP interconnect

SARA

router

router

router

router
Introduction of Lightpaths

SURFnet6
Hybrid Network

router

router

router

SARA

router

router

?
Lightpath Challenges

- Interconnect sites at L2 or at L3?
- How to handle security?
- How to handle addressing?
- How to protect against configuration errors and accidents at other site?
L2 versus L3

L2 pros
- Cheap Ethernet switches

L2 cons
- No IP ACLs
- Mixing of administrative domains
 - One broadcast domain, one IP subnet

L3 pros
- Well-known (we know how to do this between sites)
- Supports ACLs and firewall
- Easier fault resolution
 - Ping, traceroute, router reachability

L3 cons
- Routers (and L3 switches) usually more expensive
SARA's Requirements

- Keep services separated
 Access to one service does not mean access to another service, unless explicitly allowed
- No (accidental) connectivity between lightpaths via SARA
- No (accidental) Internet connectivity via SARA
- Solution must **scale** to multiple services and multiple lightpath peer sites
- Solution must support multiple 10G connections
- No big routing tables on the servers
 Only a default gateway
- Segmenting the routing tables
 e.g. No LHCOPN prefixes in global routing table
Problems Encountered in LHCOPN

- Only storage servers traffic allowed on the LHCOPN
- Other hosts and servers must reach CERN via Internet
- Traditional destination based routing does **not** work
- We needed to find a good, scalable solution
SARA's Choices

- Interconnect at L3
 - L2 only for few very simple cases

- BGP routing
 - BGP detects when peer is unreachable
 - BGP needed when there are multiple paths

- Routing segmentation
 - Put each lightpath project in its own virtual router
 - Good way to keep projects and services separated
Virtual Routing

Global Table: if1, if4, if5
VR1 (LHCOPN): if6, if7, if8
VR2 (IMAU): if2
VR3 (LOFAR): if3
Virtual Router Solution

- **Virtual routing is a scalable way to keep services and lightpath peers separated**

- Problem with traditional destination based routing + ACLs:
 - ACLs are difficult to maintain
 - Not a scalable solution
 - Configuration errors mean unwanted access

- Problem with policy based routing:
 - Only 1 next hop, does not work with multiple links
 - Next hop is specified as specific interface
 - Does not use BGP, no route information exchange
 - No link failure detection when switches in path
Problems Encountered

- Often little BGP knowledge at peer sites
- Many peer sites do not have a global AS
- Most routers have insufficient Virtual Routing capabilities
- We had to gain knowledge of virtual routing
- Detecting of link failures often difficult

 Link failures do not propagate through Ethernet switches
 (BGP session, 802.1ag, BFD, ...)

E2E Workshop, 1-2 Dec, Amsterdam, The Netherlands
Conclusions

- Supporting multiple lightpaths and multiple services is not a trivial task
- Virtual routing is a relatively simple way to handle the routing and separation requirements
- Routing requirements often result in the choice for BGP
Thank You

Ronald van der Pol

rvdp@sara.nl